【题目】已知数列的前项和,对任意正整数,总存在正数使得, 恒成立:数列的前项和,且对任意正整数, 恒成立.
(1)求常数的值;
(2)证明数列为等差数列;
(3)若,记 ,是否存在正整数,使得对任意正整数, 恒成立,若存在,求正整数的最小值,若不存在,请说明理由.
【答案】(1)(2)见解析(3)正整数的最小值为4
【解析】试题分析:(1)根据, ,可得,根据题意令和,即可求出,从而求出;(2)由,得,两式做差得,从而可证数列为等差数列;(3)根据(2)可得,结合(1),表示出,作出,然后令,即可求出的最大值,从而求出正整数的最小值.
试题解析:(1)∵①
∴②,,
①-②得: ,即, ,
又
∴, ,
时, ; 时, .
∵为正数
∴.
又∵, ,且
∴.
(2)∵③
∴当时, ④,
∴③-④得: ,即⑤,
又∵⑥
∴⑤+⑥得: ,即
∴为等差数列.
(3)∵, ,由(2)知为等差数列
∴.
又由(1)知,
∴ ,
又∵ ,
∴ ,
令得,
∴,解得,
∴时, ,即,
∵时, ,
∴,即.
此时,即,
∴的最大值为
若存在正整数,使得对任意正整数, 恒成立,则,
∴正整数的最小值为4.
科目:高中数学 来源: 题型:
【题目】已知数列中,,(且).
(1)求的值;
(2)是否存在实数,使得数列为等差数列?若存在,求出的值;若不存在,请说明理由;
(3)设数列的前n项和为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年10月18日至10月24日,中国共产党第十九次全国代表大会简称党的“十九大”在北京召开一段时间后,某单位就“十九大”精神的领会程度随机抽取100名员工进行问卷调查,调查问卷共有20个问题,每个问题5分,调查结束后,发现这100名员工的成绩都在内,按成绩分成5组:第1组,第2组,第3组,第4组,第5组,绘制成如图所示的频率分布直方图,已知甲、乙、丙分别在第3,4,5组,现在用分层抽样的方法在第3,4,5组共选取6人对“十九大”精神作深入学习.
求这100人的平均得分同一组数据用该区间的中点值作代表;
求第3,4,5组分别选取的作深入学习的人数;
若甲、乙、丙都被选取对“十九大”精神作深入学习,之后要从这6人随机选取2人再全面考查他们对“十九大”精神的领会程度,求甲、乙、丙这3人至多有一人被选取的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线x2=4y.
(1)求抛物线在点P(2,1)处的切线方程;
(2)若不过原点的直线l与抛物线交于A,B两点(如图所示),且OA⊥OB,|OA|=|OB|,求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD="40" m,则电视塔的高度为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com