【题目】2017年10月18日至10月24日,中国共产党第十九次全国代表大会
简称党的“十九大”
在北京召开
一段时间后,某单位就“十九大”精神的领会程度随机抽取100名员工进行问卷调查,调查问卷共有20个问题,每个问题5分,调查结束后,发现这100名员工的成绩都在
内,按成绩分成5组:第1组
,第2组
,第3组
,第4组
,第5组
,绘制成如图所示的频率分布直方图,已知甲、乙、丙分别在第3,4,5组,现在用分层抽样的方法在第3,4,5组共选取6人对“十九大”精神作深入学习.
![]()
求这100人的平均得分
同一组数据用该区间的中点值作代表
;
求第3,4,5组分别选取的作深入学习的人数;
若甲、乙、丙都被选取对“十九大”精神作深入学习,之后要从这6人随机选取2人再全面考查他们对“十九大”精神的领会程度,求甲、乙、丙这3人至多有一人被选取的概率.
【答案】(1)87.25;(2)3,2,
;(3)![]()
【解析】
(1)利用频率分布直方图的性质能求出这100人的平均得分(2)第3组的人数为30,第4组的人数为20,第5组的人数为10,用分层抽样能求出在这三个组选取的人数(3)记其他人为甲、乙、丙、丁、戊、己,从这6人随机选取2人,利用列举法能写出甲、乙、丙这3人至多有一人被选取的概率.
这100人的平均得分为:
.
第3组的人数为
,
第4组的人数为
,
第5组的人数为
,故共有60人,
用分层抽样在这三个组选取的人数分别为:3,2,![]()
记其他人为甲、乙、丙、丁、戊、己,
则所有选取的结果为
甲、乙
、
甲、丙
、
甲、丁
、
甲、戊
、
甲、己
、
乙、丙
、
乙、丁
、
乙、戊
、
乙、己
、
丙、丁
、
丙、戊
、
丙、己
、
丁、戊
、
丁、己
、
戊、己
共15种情况,
其中甲、乙、丙这3人至多有一人被选取有12种情况,
故甲、乙、丙这3人至多有一人被选取的概率为![]()
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)如图所示的茎叶图记录了甲、乙两组各四名同学的投篮命中次数, 乙组记录中有一个数据模糊,无法确认, 在图中以
表示.
![]()
(Ⅰ)如果乙组同学投篮命中次数的平均数为
, 求
及乙组同学投篮命中次数的方差;
(Ⅱ)在(Ⅰ)的条件下, 分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名, 记事件A:“两名同学的投篮命中次数之和为17”, 求事件A发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年“十一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(
)分成六段:
,
,
,
,
,
,后得到如图的频率分布直方图.
![]()
(1)求这40辆小型车辆车速的众数和中位数的估计值;
(2)若从车速在
的车辆中任抽取2辆,求车速在
的车辆恰有一辆的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】孝感车天地关于某品牌汽车的使用年限
(年)和所支出的维修费用
(千元)由如表的统计资料:
| 2 | 3 | 4 | 5 | 6 |
| 2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)画出散点图并判断使用年限与所支出的维修费用是否线性相关;如果线性相关,求回归直线方程;
(2)若使用超过8年,维修费用超过1.5万元时,车主将处理掉该车,估计第10年年底时,车主是否会处理掉该车?
(
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
和
是椭圆
的两个焦点,且点
在椭圆C上.
(1)求椭圆C的方程;
(2)直线
(m>0)与椭圆C有且仅有一个公共点,且与x轴和y轴分别交于点M,N,当△OMN面积取最小值时,求此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和
,对任意正整数
,总存在正数
使得
,
恒成立:数列
的前
项和
,且对任意正整数
,
恒成立.
(1)求常数
的值;
(2)证明数列
为等差数列;
(3)若
,记
,是否存在正整数
,使得对任意正整数
,
恒成立,若存在,求正整数
的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)若不过原点
的直线
与椭圆
相交于
两点,与直线
相交于点
,且
是线段
的中点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知
分别为椭圆
的左、右焦点,且椭圆经过点
和点
,其中
为椭圆的离心率.
![]()
(1)求椭圆的方程;
(2)过点
的直线
椭圆于另一点
,点
在直线
上,且
.若
,求直线
的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com