精英家教网 > 高中数学 > 题目详情
17.在ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上一点,DC=2BD,则$\overrightarrow{AD}$•$\overrightarrow{BC}$=$-\frac{8}{3}$.

分析 选定基向量$\overrightarrow{AB}$,$\overrightarrow{AC}$,将两向量$\overrightarrow{AD}$与$\overrightarrow{BC}$用基向量表示出来,再进行数量积运算,即可求出$\overrightarrow{AD}$•$\overrightarrow{BC}$的值.

解答 解:选定基向量$\overrightarrow{AB}$,$\overrightarrow{AC}$,由图及题意得
$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$,$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$=$\frac{1}{3}$$\overrightarrow{AC}$+$\frac{2}{3}$$\overrightarrow{AB}$,
则$\overrightarrow{AD}$•$\overrightarrow{BC}$=($\overrightarrow{AC}$-$\overrightarrow{AB}$)•($\frac{1}{3}$$\overrightarrow{AC}$+$\frac{2}{3}$$\overrightarrow{AB}$)
=$\frac{1}{3}$${\overrightarrow{AC}}^{2}$+$\frac{1}{3}$$\overrightarrow{AC}•\overrightarrow{AB}$-$\frac{2}{3}$${\overrightarrow{AB}}^{2}$
=$\frac{1}{3}$$+\frac{1}{3}×2×(-\frac{1}{2})$$-\frac{2}{3}×{2}^{2}$
=-$\frac{8}{3}$.
故答案为:$-\frac{8}{3}$.

点评 本题主要考查余弦定理和向量数量积的应用.向量和三角函数的综合题是高考热点,要给予重视.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=sin(ωx+φ)(ω>0且|φ|<$\frac{π}{2}$)在区间[$\frac{π}{6}$,$\frac{2π}{3}$]上是单调减函数,且函数值从1减小到-1,则f($\frac{π}{4}$)=(  )
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2+|x+1-a|,其中a为实常数
(Ⅰ)判断f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]上的单调性
(Ⅱ)若存在x∈R,使不等式f(x)≤2|x-a|成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若Ai(i=1,2,3,…,n)是△AOB所在的平面内的点,且$\overrightarrow{O{A}_{i}}$•$\overrightarrow{OB}$=$\overrightarrow{OA}$•$\overrightarrow{OB}$.给出下列说法:
①|$\overrightarrow{O{A}_{1}}$|=|$\overrightarrow{O{A}_{2}}$|=…=|$\overrightarrow{O{A}_{n}}$|=|$\overrightarrow{OA}$|;
②|$\overrightarrow{O{A}_{i}}$|的最小值一定是|$\overrightarrow{OB}$|;
③点A、Ai在一条直线上.
其中正确的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a>b>0,则a+$\frac{1}{b}$+$\frac{1}{a-b}$的最小值为(  )
A.2B.3C.4D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.阅读如图所示的程序框图,则该算法最后输出的结果为(  )
A.15B.31C.63D.127

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示的程序框图运行的结果是(  )
A.$\frac{2011}{2012}$B.$\frac{1}{2012}$C.$\frac{2012}{2013}$D.$\frac{1}{2013}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知α,β是两个不同的平面,m,n是两条不同的直线,则下列命题不正确的是(  )
A.若m∥α,α∩β=n,则m∥nB.若m⊥α,m?β,则α⊥β
C.若m∥n,m⊥α,则n⊥αD.若m⊥β,m⊥α,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}的通项公式an=2n+1,其前n项和为Sn,则数列{$\frac{{S}_{n}}{n}$}的前4项的和为(  )
A.20B.17C.16D.18

查看答案和解析>>

同步练习册答案