精英家教网 > 高中数学 > 题目详情
已知f(x)=9x-2×3x+4,x∈[-1,2].
(1)设t=3x,x∈[-1,2],求t的最大值与最小值;
(2)求f(x)的最大值与最小值.
(1)设t=3x,∵x∈[-1,2],函数t=3x在[-1,2]上是增函数,故有
1
3
≤t≤9,故t的最大值为9,t的最小值为
1
3

(2)由f(x)=9x-2×3x+4=t2-2t+4=(t-1)2+3,可得此二次函数的对称轴为 t=1,且
1
3
≤t≤9,
故当t=1时,函数f(x)有最小值为3,
当t=9时,函数f(x)有最大值为 67.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某汽车运输公司,购买一批客车投入营运,据市场分析,每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N*)的关系为二次函数(如图示),则每辆客车营运多少年,其营运的年平均利润最大,并求其最大值?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P(元)与时间t(天)函数关系如图(一)所示,该商品日销售量Q(件)与时间t(天)函数关系如图(二)所示.

①写出图(一)表示的销售价格与时间的函数关系式P=f(t),写出图(二)表示的日销售量与时间的函数关系式Q=g(t),及日销售金额M(元)与时间的函数关系M=h(t).
②乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N(元)与时间t(天)之间的函数关系为N=-2t2-10t+2750,比较4月份每天两商店销售金额的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=ax在[0,1]上的最大值与最小值和为3,则函数y=3a1-x在[0,1]上的最大值是(  )
A.6B.1C.3D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若偶函数f(x)在(-∞,0]上是减函数,则下列关系中成立的是(  )
A.f(0.10.2)<f(1.10.2)<f(1.10.6
B.f(1.10.2)<f(1.10.6)<f(0.10.2
C.f(0.10.2)>f(1.10.2)>f(1.10.6
D.f(1.10.2)<f(0.10.2)<f(1.10.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)=
1
2
(ax+a-x),(a>0且a≠1).
(1)讨论f(x)的奇偶性;
(2)若函数f(x)的图象经过点(2,
41
9
),求f(x).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设lg2=a,lg3=b,则log1815=(  )
A.
b-a+1
a+2b
B.
b+a+1
a+2b
C.
b-a+1
a-2b
D.
b+a+1
a-2b

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程的解集为       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,且,则(    )
A.0B.C.1D.2

查看答案和解析>>

同步练习册答案