精英家教网 > 高中数学 > 题目详情
6.已知$\frac{sinα-2cosα}{2sinα+cosα}=-1$,则tanα=$\frac{1}{3}$.

分析 利用同角三角函数基本关系式,化简表达式为正切函数的形式,然后求解即可.

解答 解:由$\frac{sinα-2cosα}{2sinα+cosα}=-1$,
可得:$\frac{tanα-2}{2tanα+1}$=-1,
解得tanα=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.根据规律填出后面的第几个数,现给出一组数:$\frac{1}{2}$,$\frac{1}{2}$,$\frac{3}{8}$,$\frac{1}{4}$,$\frac{5}{32}$,它的第8个数是$\frac{1}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若$\frac{π}{2}<α<π$,则sinα-cosα的值与1的大小关系是(  )
A.sinα-cosα>1B.sinα-cosα=1C.sinα-cosα<1D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,直线L的参数方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+2ρ2sin2θ=12,且直线与曲线C交于P,Q两点
(1)求曲线C的普通方程及直线L恒过的定点A的坐标;
(2)在(1)的条件下,若|AP||AQ|=6,求直线L的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若经过点A(3,a)、B(4,-4)的直线与经过点C(-2,0)且斜率为2的直线垂直,则a的值为(  )
A.-$\frac{7}{2}$B.$\frac{15}{4}$C.10D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$A(cosα,\sqrt{3}sinα),B(2cosβ,\sqrt{3}sinβ),C(-1,0)$是平面上三个不同的点,且满足关系$\overrightarrow{CA}=λ\overrightarrow{BC}$,则实数λ的取值范围是[-2,1],λ≠0..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点$(1,\frac{3}{2})$,离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)过点(1,0)的直线l与椭圆C交于两点A,B,若$\overrightarrow{OA}•\overrightarrow{OB}=-2$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于点M,N两点.
(1)求k的取值范围;
(2)请问是否存在实数k使得$\overrightarrow{OM}•\overrightarrow{ON}=12$(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知定义在R上的偶函数f(x)满足f(x+4)=f(x)+f(2),且0≤x≤2时,f(x)=$\left\{\begin{array}{l}-12{x^2}+12x,x∈[{0,1}]\\-4{x^2}+12x-8,x∈(1,2]\end{array}$,若函数g(x)=f(x)-a|x|(a≠0),在区间[-3,3]上至多有9个零点,至少有5个零点,则a的取值范围是$[20-8\sqrt{6},12-8\sqrt{2}]$.

查看答案和解析>>

同步练习册答案