精英家教网 > 高中数学 > 题目详情
13.若函数f(x)=x+$\frac{4}{x}$,则不等式4≤f(x)<5的解集为{x|1<x<4}.

分析 由已知得$4≤x+\frac{4}{x}<5$,转化为一元二次不等式组,能求出结果.

解答 解:∵f(x)=x+$\frac{4}{x}$,4≤f(x)<5,
∴$4≤x+\frac{4}{x}<5$,
∴$\left\{\begin{array}{l}{{x}^{2}-4x+4≥0}\\{{x}^{2}-5x+4<0}\\{x≠0}\end{array}\right.$,
解得1<x<4.
∴不等式4≤f(x)<5的解集为{x|1<x<4}.
故答案为:{x|1<x<4}.

点评 本题考查不等式解集的求法,是基础题,解题时要认真审题,注意一元二次不等式的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足$P=3-\frac{2}{x+1}$(其中0≤x≤a,a为正常数);已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为$(4+\frac{20}{p})$万元/万件.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润是大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a>0且a≠1,若函数f(x)=loga[ax2-(2-a)x+3]在[$\frac{1}{3}$,2]上是增函数,则a的取值范围是{a|$\frac{1}{6}$<a≤$\frac{2}{5}$ 或a≥$\frac{6}{5}$ }.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个长方体被一个平面所截,切去一部分,得到一个几何体,其三视图如图所示,则截面面积为(  )
A.$\sqrt{141}$B.2$\sqrt{141}$C.16$\sqrt{6}$D.4$\sqrt{141}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=$\sqrt{{x}^{2}+1}$-ax,其中a≥1,求函数f(x)在[a,+∞)上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x与y 之间的一组数据:
 x  0  1  2  3
 y  1  3  5  7
则y与x的线性回归方程y=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知全集U=R,若A={x|x=$\frac{k}{3}$+$\frac{1}{6}$,k∈Z},B={x|x=$\frac{k}{6}$+$\frac{1}{3}$,k∈Z},有如下判断:
①∁UB?∁UA;②A∩B=A;③A∪B=A;④∁UA⊆B;⑤A∪B=U
其中正确的序号有②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知{an}是一个无穷等比数列,则下列说法错误的是(  )
A.若c是不等于零的常数,那么数列{c•an}也一定是等比数列
B.将数列{an}中的前k项去掉,剩余各项顺序不变组成一个新的数列,这个数列一定是等比数列
C.{a2n-1}(n∈N*)是等比数列
D.设Sn是数列{an}的前n项和,那么S6、S12-S6、S18-S12也一定成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一个袋子中装有三个编号分别为1,2,3的红球和三个编号分别为1,2,3的白球,三个红球按其编号分别记为a1,a2,a3,三个白球按其编号分别记为b1,b2,b3,袋中的6个球除颜色和编号外没有任何差异,现从袋中一次随机地取出两个球,
(1)列举所有的基本事件,并写出其个数;
(2)规定取出的红球按其编号记分,取出的白球按其编号的2倍记分,取出的两个球的记分之和为一次取球的得分,求一次取球的得分不小于6的概率.

查看答案和解析>>

同步练习册答案