【题目】设
,则使得
的
的取值范围是( )
A.
B.
C.
D. ![]()
【答案】B
【解析】分析:根据题意,由函数f(x)的解析式分析可得函数f(x)的图象关于直线x=1对称,当x≥1时,对函数f(x)求导分析可得函数f(x)在[1,+∞)上为减函数,则原不等式变形可得f(|x|)<f(|2x﹣3|),结合单调性可得|x|>|2x﹣3|,解可得x的取值范围,即可得答案.
详解:根据题意,f(x)=﹣x2+2x﹣2(ex﹣1+e1﹣x)=﹣(x﹣1)2﹣2(ex﹣1+
)+1,
分析可得:y=﹣(x﹣1)2+1与函数y=2(ex﹣1+e1﹣x)都关于直线x=1对称,
则函数f(x)=﹣x2+2x﹣2(ex﹣1+e1﹣x)的图象关于直线x=1对称,
f(x)=﹣x2+2x﹣2(ex﹣1+e1﹣x),
当x≥1时,f′(x)=﹣2x+2﹣(ex﹣1﹣
)=﹣2(x+1+ex﹣1﹣
),
又由x≥1,则有ex﹣1≥
,即ex﹣1﹣
≥0,
则有f′(x)<0,
即函数f(x)在[1,+∞)上为减函数,
f(x+1)<f(2x﹣2)f(|x+1﹣1|)<f(|2x﹣2﹣1|)
f(|x|)<f(|2x﹣3|)|x|>|2x﹣3|,
变形可得:x2﹣4x+3<0,
解可得1<x<3,
即不等式的解集为(1,3);
故选:B.
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在直角坐标系xOy中,设倾斜角为α的直线l:
(t为参数)与曲线C:
(θ为参数)相交于不同的两点A,B.
(Ⅰ)若α=
,求线段AB中点M的坐标;
(Ⅱ)若|PA|·|PB|=|OP|
,其中P(2,
),求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年高考成绩揭晓,某高中再创辉煌,考后学校对于单科成绩逐个进行分析:现对甲、乙两个文科班的数学成绩进行分析,规定:大于等于135分为优秀,135分以下为非优秀,成绩统计后,得到如下的
列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为
.
![]()
(1)请完成上面的列联表;
(2)请问:是否有75%的把握认为“数学成绩与所在的班级有关系”?
(3)用分层抽样的方法从甲、乙两个文科班的数学成绩优秀的学生中抽取5名学生进行调研,然后再从这5名学生中随机抽取2名学生进行谈话,求抽到的2名学生中至少有1名乙班学生的概率.
参考公式:
(其中
)
参考数据:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,直线l的极坐标方程为ρcos(θ+
)=1.以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系,圆C的参数方程为
(θ为参数).若直线l与圆C相切,求r的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是直角梯形,侧棱
底面
,
垂直于
和
,
为棱
上的点,
,
.
![]()
(1)若
为棱
的中点,求证:
//平面
;
(2)当
时,求平面
与平面
所成的锐二面角的余弦值;
(3)在第(2)问条件下,设点
是线段
上的动点,
与平面
所成的角为
,求当
取最大值时点
的位置.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com