分析 (1)由条件利用直线和平面平行的性质可得AB∥MD,D为BC的中点,可得SC∥ND,再利用直线和平面平行的判定定理证得SC∥面MND.
(2)取AB的中点为O,根据AB⊥SO,AB⊥CO,证明AB⊥平面SOC,可得AB⊥SC,从而证得MD⊥SC.
解答 (1)证明:∵M、N分别为AC、SB的中点,经过M、N且与AB平行的平面α与BC交于点D,
故AB∥MD,∴D为BC的中点,故NC为△SBC的中位线,∴SC∥ND.
而ND?面MND,∴SC∥面MND.
(2)证明:取AB的中点为O,则由△SAB与△ABC均为等边三角形,可得AB⊥SO,AB⊥CO.
而SO∩CO=O,∴AB⊥平面SOC,∴AB⊥SC,∴MD⊥SC.
点评 本题主要考查直线和平面平行的性质定理和判定定理,直线和平面垂直判定定理的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com