精英家教网 > 高中数学 > 题目详情
直线(2m-1)x-(m+2)y+m=-3(m∈R),经过定点为(  )
A、(
1
2
,2)
B、(2,-1)
C、(
3
5
4
5
D、(
1
5
7
5
考点:恒过定点的直线
专题:直线与圆
分析:把直线方程中参数m分离出来,再利用m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,可得定点的坐标.
解答: 解:直线(2m-1)x-(m+2)y+m=-3,即 m(2x-y+1)+(-x-2y+3)=0,
2x-y+1=0
-x-2y+3=0
,求得
x=
1
5
y=
7
5
,故次直线经过定点(
1
5
7
5
),
故选:D.
点评:本题主要考查直线过定点问题,利用了m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanθ=2,则
sin(
π
2
+θ)-cos(π+θ)
sin(-
3
2
π-θ)-sin(θ-4π)
的值为(  )
A、2
B、-2
C、0
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个判断:
①?x∈R,x2-x+1≤0;
②已知随机变量X服从正态分布N(3,σ2),P(X≤6)=0.72,则P(X≤0)=0.28;
③已知(x2+
1
x
n的展开式的各项系数和为32,则展开式中x项的系数为20;
1
0
1-x2
dx>
e
1
1
x
dx
其中正确的个数有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
3
x3-x2+a,函数g(x)=x2-3x,它们的定义域均为[1,+∞),并且函数f(x)的图象始终在函数g(x)的上方,那么a的取值范围是(  )
A、(0,+∞)
B、(-∞,0)
C、(-
4
3
,+∞)
D、(-∞,
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=1-i,则
z 
z-1
=(  )
A、-1-iB、1+i
C、2iD、-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|22x-1
1
4
},B={y|log 
1
16
y≥
1
2
},则∁RA∩B=(  )
A、∅
B、(0,
1
4
C、(0,
1
4
]
D、(-
1
2
1
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,AB=10,AC=6,BC边上中线长为7,则S△ABC的值为(  )
A、30
3
B、15
3
C、
15
2
3
D、15

查看答案和解析>>

科目:高中数学 来源: 题型:

幂函数y=xα中当α取不同的正数时,在[0,1]上它们的图象是一组美丽的曲线,设点A(1,0),B(0,1),若线段AB恰被两个幂函数y=xα,y=xβ的图象三等份,即BM=MN=NA,则αβ=(  )
A、1B、2C、3D、无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:|x+4|+|x|>6.

查看答案和解析>>

同步练习册答案