精英家教网 > 高中数学 > 题目详情
17.《九章算术》是我国古代内容极为丰富的数学名著的,书中有如下问题:“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积V=$\frac{1}{12}$×(底面的圆周长的平方×高),则该问题中圆周率π的取值为3(注:一丈等于十尺).

分析 由题意,圆柱体底面的圆周长48尺,高11尺,利用圆堡瑽(圆柱体)的体积V=$\frac{1}{12}$×(底面的圆周长的平方×高),求出V,再建立方程组,即可求出圆周率π的取值.

解答 解:由题意,圆柱体底面的圆周长48尺,高11尺,
∵圆堡瑽(圆柱体)的体积V=$\frac{1}{12}$×(底面的圆周长的平方×高),
∴V=$\frac{1}{12}$×(482×11)=2112,
∴$\left\{\begin{array}{l}{2πR=48}\\{π{R}^{2}×11=2112}\end{array}\right.$
∴π=3,R=8,
故答案为:3.

点评 本题考查圆柱体底面的圆周长、体积的计算,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知f(x)=2x2-3x+1,g(x)=k•sin(x-$\frac{π}{6}$)(k≠0).
(1)设f(x)的定义域为[0,3],值域为A; g(x)的定义域为[0,3],值域为B,且A⊆B,求实数k的取值范围.
(2)若方程f(sinx)+sinx-a=0在[0,2π)上恰有两个解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在等差数列{an}中,a1=$\frac{1}{3}$,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=4,q=b2S2
(I)求an与bn
(Ⅱ)设数列{cn}满足cn=an•bn,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,既是偶函数,又在(1,+∞)上单调递增的为(  )
A.y=ln(x2+1)B.y=cosxC.y=x-lnxD.y=($\frac{1}{2}$)|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知tanα<0,sinα=-$\frac{\sqrt{3}}{3}$,则sin2α=(  )
A.$\frac{2\sqrt{2}}{3}$B.-$\frac{2\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{3}$D.-$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足$\overrightarrow{PA}$=$\overrightarrow{PB}$+$\overrightarrow{PC}$,则$\frac{|\overrightarrow{PD}|}{|\overrightarrow{AD}|}$的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线y=k(x+2)与抛物线y2=8x交于A、B两点,F为抛物线的焦点,则直线FA与直线FB的斜率之和等于(  )
A.-4B.4C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设a=cos420°,函数f(x)=ax,则f(log2$\frac{1}{6}$)的值等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知正方形ABCD,E是边AB的中点,将△ADE沿DE折起至A′DE,如图所示,若A′CD为正三角形,则ED与平面A′DC所成角的余弦值是$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

同步练习册答案