精英家教网 > 高中数学 > 题目详情
3.正方形ABCD的边长为a,PA⊥平面ABCD,PA=a,则直线PB与平面PAC所成的角为30°.

分析 设AC,BD交于点O,连结PO,则可证BD⊥平面PAC,故而∠BPO为所求角,利用勾股定理求出OB,PB即可得出sin∠BPO.

解答 解:连结AC,BD交于点O,连结OP,
∵PA⊥平面ABCD,BD?平面ABCD,
∴PA⊥BD,
∵四边形ABCD是正方形,∴BD⊥AC,
又PA?平面PAC,AC?平面PAC,PA∩AC=A,
∴BD⊥平面PAC,
∴∠BPO为PB与平面PAC所成的角.
∵四边形ABCD是正方形,AB=PA=a,
∴OB=$\frac{1}{2}BD$=$\frac{\sqrt{2}}{2}a$,PB=$\sqrt{2}a$,
∴sin∠BPO=$\frac{OB}{PB}$=$\frac{1}{2}$.
∴∠BPO=30°.
故答案为:30°.

点评 本题考查了线面垂直的判定,线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.学校选派5名同学参加“华约”“北约”“卓越联盟”自主招生考试,每项考试至少选派1人参加,共有多少种不同的选派方法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.极坐标方程ρcosθ=3(ρ>0,-$\frac{π}{2}$<θ<$\frac{π}{2}$)表示什么曲线?并求出曲线上点的极坐标,使它的极角θ分别等于$\frac{π}{6}$,$\frac{π}{4}$,$\frac{π}{3}$,-$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在直三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点.
(1)若AA1=AB=AC=BC=2,求三棱锥A1-AEF的体积;
(2)求证:平面EFA1∥平面BCHG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,长方体ABCD-A1B1C1D1中,AB=AD=1.
(1)求异面直线A1B1与BD所成角的大小;
(2)设直线AB1与平面ABCD所成的角为60°,求三棱锥B1-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,四边形ABCD为矩形,△PAD为等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E、F分别为PC、AB的中点
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)证明:PA⊥平面PCD;
(Ⅲ)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=2,BC=2$\sqrt{2}$,M,N分别是CC1,BC的中点,点P在直线A1B1上,且$\overrightarrow{{A_1}P}=λ\overrightarrow{{A_1}{B_1}}$.
(Ⅰ)证明:无论λ取何值,总有AM⊥PN;
(Ⅱ)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角取最大值时的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,PA⊥平面ABCD,矩形ABCD的边长AB=1,BC=2,E为BC的中点.
(1)证明:PE⊥DE;
(2)如果异面直线AE与PD所成角的大小为$\frac{π}{3}$,求PA的长及点A到平面PED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某几何体的三视图如图所示,其中正视图和侧视图均为全等的几何图形(下边是边长为2的正方形,上边为半圆),俯视图为等腰直角三角形(直角边的长为2)及其外接圆,则该几何体的体积是4+$\frac{4\sqrt{2}π}{3}$.

查看答案和解析>>

同步练习册答案