| A. | {1,$\sqrt{7}$} | B. | {-1,$\sqrt{7}$} | C. | {1,$\sqrt{7}$,-$\sqrt{7}$} | D. | {1,-1,$\sqrt{7}$,-$\sqrt{7}$} |
分析 求出A中x的值确定出A,求出B中x的范围确定出B,找出A与B的交集即可.
解答 解:设x=[x]+b,0≤b<1,即[x]=x-b,
方程x2-2[x]-3=0,整理得:x2-2x+2b-3=0,
即2b=4-(x-1)2,
∵0≤2b<2,
∴0≤4-(x-1)2<2,即2<(x-1)2≤4,
开方得:$\sqrt{2}$<x-1≤2或-2≤x-1<-$\sqrt{2}$,
解得:1+$\sqrt{2}$<x≤3或-1≤x<1-$\sqrt{2}$,
∴[x]∈{-1,2,3},
当[x]=-1时,x2-2[x]-3=x2-1=0,
解得:x=±1(根据[x]=-1,正值舍去),即x=-1;
当[x]=2时,x2-2[x]-3=x2-7=0,
解得:x=±$\sqrt{7}$(根据[x]=2,负值舍去),即x=$\sqrt{7}$;
当[x]=3时,x^2-2[x]-3=x^2-9=0,x=±3,
(根据[x]=3,负值舍去),即x=3,
∴A={-1,√7,3},
∵B中不等式解得:-2<x<3,即B=(-2,3),
∴A∩B={-1,$\sqrt{7}$},
故选:B.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{7}{9}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({0,\sqrt{3}})$ | B. | $({0,1})∪({1,\sqrt{3}})$ | C. | $({1,\sqrt{3}})$ | D. | (0,1)∪(1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | a>c>b | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x0<a | B. | x0>b | C. | x0<c | D. | x0>c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com