【题目】如图,四棱锥的底面是边长为的正方形, 底面, 分别为的中点.
(Ⅰ)求证: 平面;
(Ⅱ)若,试问在线段上是否存在点,使得二面角 的余弦值为?若存在,确定点的位置;若不存在,请说明理由.
【答案】(Ⅰ)证明见解析;(Ⅱ)满足条件的 存在,是 中点
【解析】试题分析:(1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与论证,往往需要结合平几知识,如本题取PD中点M,利用三角形中位线性质得,再结合平行四边形性质得四边形EFMA为平行四边形,从而得出EF∥AM,(2)涉及二面角问题,一般利用空间向量进行解决,首先根据题意建立恰当的空间直角坐标系,设立各点坐标,利用方程组求各面的法向量,结合向量数量积求向量夹角,最后根据二面角与向量夹角的关系列等量关系,求出待定参数
试题解析:证明:(Ⅰ)取PD中点M,连接MF、MA,
在△PCD中,F为PC的中点,∴,
正方形ABCD中E为AB中点,∴,∴,
故四边形EFMA为平行四边形,∴EF∥AM,
又∵EF平面PAD,AM平面PAD,
∴EF∥平面PAD;
(Ⅱ)结论:满足条件的Q存在,是EF中点.理由如下:
如图:以点A为坐标原点建立空间直角坐标系,
则P(0,0,2),B(0,1,0),C(1,1,0),E(0, ,0),F(, ,1),
由题易知平面PAD的法向量为=(0,1,0),
假设存在Q满足条件:设,
∵,∴, ,λ∈,
设平面PAQ的法向量为,
由,可得,
∴,
由已知: ,解得: ,
所以满足条件的Q存在,是EF中点.
科目:高中数学 来源: 题型:
【题目】用反证法证明命题:“三角形的内角至少有一个锐角”,正确的假设是( )
A. 三角形的内角至多有两个锐角
B. 三角形的内角至多有一个锐角
C. 三角形的内角没有一个锐角
D. 三角形的内角没有一个锐角或至少有两个锐角
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的发展,居民的储蓄存款逐年增长,设某地区城乡居民人民币储蓄存款(年底余额)如下表:
(I)求y关于t的回归方程;
(II)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款。
附:回归方程中,
,。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在研究塞卡病毒(Zika virus)某种疫苗的过程中,为了研究小白鼠连续接种该种疫苗后出现症状的情况,做接种试验,试验设计每天接种一次,连续接种3天为一个接种周期.已知小白鼠接种后当天出现症状的概率为,假设每次接种后当天是否出现症状与上次接种无关.
(1)若出现症状即停止试验,求试验至多持续一个接种周期的概率;
(2)若在一个接种周期内出现2次货3次症状,则这个接种周期结束后终止试验,试验至多持续3个周期,设接种试验持续的接种周期数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C过点(0,2),其焦点为F1(﹣,0),F2(,0).
(1)求椭圆C的标准方程;
(2)已知点P在椭圆C上,且PF1=4,求△PF1F2的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com