分析 先求出$\overrightarrow{a}-2\overrightarrow{c}$=(2,-2),再由($\overrightarrow{a}$-2$\overrightarrow{c}$)⊥$\overrightarrow{b}$,得($\overrightarrow{a}-2\overrightarrow{c}$)$•\overrightarrow{b}$=10-2m=0,由此能求出m.
解答 解:∵向量$\overrightarrow{a}$=(4,4),$\overrightarrow{b}$=(5,m),$\overrightarrow{c}$=(1,3),
∴$\overrightarrow{a}-2\overrightarrow{c}$=(4,4)-(2,6)=(2,-2),
∵($\overrightarrow{a}$-2$\overrightarrow{c}$)⊥$\overrightarrow{b}$,
∴($\overrightarrow{a}-2\overrightarrow{c}$)$•\overrightarrow{b}$=10-2m=0,
解得m=5.
故答案为:5.
点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)恒大于0 | B. | f(x)在定义域上单调递增 | ||
| C. | f(x)在定义域上单调递减 | D. | f(x)在定义域上有极小值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com