精英家教网 > 高中数学 > 题目详情
18.在公差不为0的等差数列{an}中,a22=a3+a6,且a3为a1与a11的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=an•2an,求数列{bn}的前n项和Tn

分析 (Ⅰ)利用已知条件求出数列的公差,求出首项,然后求数列{an}的通项公式;
(Ⅱ)化简新数列的通项公式,利用错位相减法求和求解即可.

解答 (本小题满分12分)
解:(Ⅰ)设数列{an}的公差为d,∵${a_2}^2={a_3}+{a_6}$,∴${({a_1}+d)^2}={a_1}+2d+{a_1}+5d$①
∵${a_3}^2={a_1}•{a_{11}}$即${({a_1}+2d)^2}={a_1}•({a_1}+10d)$②
∵d≠0,由①②解得a1=2,d=3…(4分)
∴数列{an}的通项公式为an=3n-1.…(6分)
(Ⅱ)${b_n}={a_n}•{2^{a_n}}=(3n-1)•{2^{3n-1}}$,
∴${T_n}=2•{2^2}+5•{2^5}+8•{2^8}+…+(3n-4)•{2^{3n-4}}+(3n-1)•{2^{3n-1}}$①
$8{T_n}=2•{2^5}+5•{2^8}+…+(3n-4)•{2^{3n-1}}+(3n-1)•{2^{3n+2}}$②
①-②得$-7{T_n}=2•{2^2}+3•{2^5}+3•{2^8}+…+3•{2^{3n-1}}-(3n-1)•{2^{3n+2}}$…(9分)
∴${T_n}=\frac{40}{49}+\frac{21n-10}{49}•{2^{3n+2}}$,
∴数列{bn}的前n项和${T_n}=\frac{{40+(21n-10){2^{3n+2}}}}{49}$…(12分)

点评 本题考查数列的递推关系式的应用,通项公式以及数列求和的方法错位相减法求和,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.执行如图所示的程序框图,则输出的S值为(  )
A.1009B.-1009C.-1007D.1008

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且满足12Sn-36=3n2+8n,数列{log3bn}为等差数列,且b1=3,b3=27.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)令cn=(-1)n$({{a_n}-\frac{5}{12}})+{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某公司拥有多家连锁店,所有连锁店共有1800名员工,为调查他们的年龄分布情况,现随机抽取该公司其中一家连锁店,将该店所有员工的年龄记录如下:
24,31,25,41,28,39,25,27,47,
32,29,36,24,34,23,37,45,22.
(Ⅰ)试估计该公司所有连锁店的员工中年龄超过40岁的人数;
(Ⅱ)在被抽到的连锁店中,从年龄在区间[30,40)的员工中,随机选取2人,求这2人年龄相差5岁的概率;
(Ⅲ)现从被抽到的连锁店的所有员工中,选派3人参加活动,当这3人年龄的方差最大时,写出这3人的年龄.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若幂函数f(x)的图象经过点A(4,2),则它在A点处的切线方程为x-4y+4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知在平面直角坐标系xOy内的四点A(1,2),B(3,4),C(-2,2),D(-3,5),则向量$\overrightarrow{AB}$在向量$\overrightarrow{CD}$方向上的投影为(  )
A.$\frac{{2\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD的底面是等腰梯形,AD∥BC,BC=2AD,O为BD的中点.
(1)求证:CD∥平面POA;
(2)若PO⊥底面ABCD,CD⊥PB,AD=PO=2,求二面角A-PD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等比数列{an}中a1=2,公比q满足lg3•log3q=lg2.
(1)试写出这个数列的通项公式;
(2)若bn=an+n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是38cm2,体积是12cm3

查看答案和解析>>

同步练习册答案