精英家教网 > 高中数学 > 题目详情
12.直线l与椭圆$\frac{{x}^{2}}{4}$+y2=1相交于A,B两点,若弦AB中点为(-1,$\frac{1}{2}$),则直线l的方程为x-2y+2=0.

分析 设A(x1,y1),B(x2,y2),则$\frac{{x}_{1}^{2}}{4}$+${y}_{1}^{2}$=1,$\frac{{x}_{2}^{2}}{4}+{y}_{2}^{2}=1$,两式相减,再利用中点坐标公式、斜率计算公式即可得出.

解答 解:设A(x1,y1),B(x2,y2),
则$\frac{{x}_{1}^{2}}{4}$+${y}_{1}^{2}$=1,$\frac{{x}_{2}^{2}}{4}+{y}_{2}^{2}=1$,
两式相减可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{4}$+(y1+y2)(y1-y2)=0,
∵弦AB中点为(-1,$\frac{1}{2}$),
∴$\frac{-2}{4}+{k}_{AB}$=0,
∴kAB=$\frac{1}{2}$.
∴直线l的方程为y-$\frac{1}{2}$=$\frac{1}{2}$(x+1),解得x-2y+2=0.
故答案为:x-2y+2=0.

点评 本题考查了椭圆的标准方程及其性质、“点差法”、中点坐标公式、斜率计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知F1,F2是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的两个焦点,过点F2的直线交椭圆于A、B两点,若|AB|=5,则|AF1|+|BF1|(  )
A.11B.10C.9D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在棱锥A-BCDE中,∠BAC=$\frac{π}{2}$,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1.
(1)求证:EF⊥AD;
(2)求三棱锥F-ADE的高.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=1的内接正方形面积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线x2-$\frac{{y}^{2}}{2}$=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{6}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E长轴的端点为A(-3,0)、B(3,0),且椭圆上的点到焦点的最小距离是1.
(1)求椭圆E的标准方程;
(2)O为原点,P是椭圆E上异于A、B的任意一点,直线AP,BP分别交y轴于M,N,问$\overrightarrow{OM}$•$\overrightarrow{ON}$是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆x2+$\frac{y^2}{4}$=1的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定点M(0,4),动点P在圆x2+y2=4上,则$\overrightarrow{MP}•\overrightarrow{OP}$的取值范围是(  )
A.[-4,12]B.[-12,4]C.[-2,14]D.[-14,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某人从东西走向的河的南岸向东北方向游去,游了100m后没有到岸边,随后,他随意选定了一个方向继续游,求这个人游100m之内能够到达南岸边的概率.

查看答案和解析>>

同步练习册答案