分析 设A(x1,y1),B(x2,y2),则$\frac{{x}_{1}^{2}}{4}$+${y}_{1}^{2}$=1,$\frac{{x}_{2}^{2}}{4}+{y}_{2}^{2}=1$,两式相减,再利用中点坐标公式、斜率计算公式即可得出.
解答 解:设A(x1,y1),B(x2,y2),
则$\frac{{x}_{1}^{2}}{4}$+${y}_{1}^{2}$=1,$\frac{{x}_{2}^{2}}{4}+{y}_{2}^{2}=1$,
两式相减可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{4}$+(y1+y2)(y1-y2)=0,
∵弦AB中点为(-1,$\frac{1}{2}$),
∴$\frac{-2}{4}+{k}_{AB}$=0,
∴kAB=$\frac{1}{2}$.
∴直线l的方程为y-$\frac{1}{2}$=$\frac{1}{2}$(x+1),解得x-2y+2=0.
故答案为:x-2y+2=0.
点评 本题考查了椭圆的标准方程及其性质、“点差法”、中点坐标公式、斜率计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 11 | B. | 10 | C. | 9 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-4,12] | B. | [-12,4] | C. | [-2,14] | D. | [-14,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com