精英家教网 > 高中数学 > 题目详情
20.椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=1的内接正方形面积为16.

分析 设内接正方形的位于第一象限内的顶点坐标(m,m),m 为正实数,由$\frac{{m}^{2}}{12}$+$\frac{{m}^{2}}{6}$=1,求出m值,即得内接正方形的边长,进而得到面积.

解答 解:设内接正方形的位于第一象限内的顶点坐标(m,n),
由内接正方形可得m=n,边长为2m,
由$\frac{{m}^{2}}{12}$+$\frac{{m}^{2}}{6}$=1,
解得m=2,
即有正方形的边长为4,面积为16.
故答案为:16.

点评 本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得内接正方形的位于第一象限内的顶点坐标,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆C;$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右顶点为A,B,点P为椭圆C上不同于A,B,的一点,且直线PA,PB的斜率之积为-$\frac{1}{2}$
(1)求椭圆的离心率;
(2)设F(-1,0)为椭圆C的左焦点,直线l过点F与椭圆C交与不同的两点M,N,且$\overrightarrow{MF}$=3$\overrightarrow{FN}$求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线与椭圆相交,其中的一个交点为P,若△F1PF2为等腰直角三角形,则椭圆的离心率是(  )
A.$\sqrt{3}$-1B.$\sqrt{2}$-1C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足an≠0,a1=$\frac{1}{3}$,an-1-an=2an•an-1(n≥2,n∈N*).
(1)求证:$({\frac{1}{a_n}})$是等差数列;
(2)设bn=an•an+1,{bn}的前n项和为Sn,求证:Sn<$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点为F1,F2,点B(0,1)在椭圆C上,且△BF1F2的周长为4+2$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若斜率为k的直线l与椭圆C交于M,N两点,且满足直线BM与直线BN的斜率之积为$\frac{1}{2}$.试用k表示△BMN面积S,并求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,A,B,C是椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC.
(1)求椭圆的离心率;
(2)若y轴被△ABC的外接圆所截得弦长为9,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线l与椭圆$\frac{{x}^{2}}{4}$+y2=1相交于A,B两点,若弦AB中点为(-1,$\frac{1}{2}$),则直线l的方程为x-2y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知定点M(0,4),动点P在圆x2+y2=4上,则$\overrightarrow{MP}$•$\overrightarrow{OP}$的取值范围是[-4,12].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}中,a2+a9=a6,则其前9项和S9的值为(  )
A.-2B.0C.1D.-2

查看答案和解析>>

同步练习册答案