分析 (1)确定△OAC是以角C为直角的等腰直角三角形,可得点的坐标,代入椭圆方程,可得a,b的关系,即可求椭圆的离心率;
(2)求出△ABC的外接圆的方程,由垂径定理得$\sqrt{{{(\frac{{\sqrt{10}}}{4}a)}^2}-{{(\frac{a}{4})}^2}}=\frac{9}{2}$,求出a,可得b,即可求椭圆方程.
解答 解:(1)因为BC过椭圆M的中心,所以BC=2OC=2OB,
又AC⊥BC,BC=2AC,所以△OAC是以角C为直角的等腰直角三角形,…(3分)
则$A(a,0),C(\frac{a}{2},-\frac{a}{2}),B(-\frac{a}{2},\frac{a}{2}),AB=\frac{{\sqrt{10}}}{2}a$,
所以$\frac{{{{(\frac{a}{2})}^2}}}{a^2}+\frac{{{{(-\frac{a}{2})}^2}}}{b^2}=1$,则a2=3b2,
所以${c^2}=2{b^2},e=\frac{{\sqrt{6}}}{3}$;…(7分)
(2)△ABC的外接圆圆心为AB中点$P(\frac{a}{4},\frac{a}{4})$,半径为$\frac{{\sqrt{10}}}{4}a$,
则△ABC的外接圆为:${(x-\frac{a}{4})^2}+{(y-\frac{a}{4})^2}=\frac{5}{8}{a^2}$,…(10分)
由垂径定理得$\sqrt{{{(\frac{{\sqrt{10}}}{4}a)}^2}-{{(\frac{a}{4})}^2}}=\frac{9}{2}$得a=6,
所以所求的椭圆方程为$\frac{x^2}{36}+\frac{y^2}{12}=1$.…(15分)
点评 本题考查椭圆的方程与性质,考查三角形的外接圆,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({1\;,\;\frac{{\sqrt{2e}}}{2e}+1})$ | B. | $({0\;,\;\frac{{\sqrt{2e}}}{2e}})$ | C. | $({1\;,\;\frac{1}{e}+1})$ | D. | $({\frac{{\sqrt{2e}}}{2e}\;,\;1})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com