精英家教网 > 高中数学 > 题目详情
13.将单位正方体放置在水平桌面上(一面与桌面完全接触),沿其一条棱翻动一次后,使得正方体的另一面与桌面完全接触,称一次翻转.如图,正方体的顶点 A,经任意翻转三次后,点 A与其终结位置的直线距离不可能为(  )
A.0B.1C.2D.4

分析 运用排除法,考虑选项A,C,D成立的情况,即可判断B不可能.

解答 解:第一次往前翻,第二次往左翻,第三次往后翻,点A始终在原来位置,
所以点A与终结位置的距离为0.如图1,A可能;
第一次往后翻,第二次往右翻,第三次往前翻,
点A与终结位置距离是2,如图2,C可能;
第一次往右翻,第二次再往右翻,第三次再往右翻,
点A与终结位置距离是4,如图3,D可能.
由排除法,可知B不可能.
故选:B.

点评 本题考查正方体的两点的距离,主要考查几何体的旋转,以及简单的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1,F2,P是椭圆上异于顶点的动点,若恰好有4个不同的点P,使得△PF1F2为等腰三角形,且有一个角为钝角,则椭圆的离心率的取值范围是($\frac{1}{3}$,$\sqrt{2}-1$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,A是椭圆C的一
个顶点,B是直线AF1与椭圆C的另一个交点,∠F1AB=90°,△F1AB的面积为$\frac{4}{3}$
(1)求椭圆C的方程
(2)设P是椭圆C上的一个动点,点P关于原点的对称点为Q,求$\overrightarrow{BP}$•$\overrightarrow{BQ}$的取值
围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长是短轴长的$\sqrt{3}$倍,且经过点($\sqrt{3}$,1).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线l1,与椭圆相交于A、B两点,过AB的中点N作直线l2与y轴交于点P,D为N在直线l上的射影,若|AB|2=4|ND|•|MP|,求直线l2的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足an≠0,a1=$\frac{1}{3}$,an-1-an=2an•an-1(n≥2,n∈N*).
(1)求证:$({\frac{1}{a_n}})$是等差数列;
(2)设bn=an•an+1,{bn}的前n项和为Sn,求证:Sn<$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆$\frac{{x}^{2}}{3}$+y2=1的一个焦点坐标为(  )
A.($\sqrt{2}$,0)B.(0,$\sqrt{2}$)C.(2,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,A,B,C是椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC.
(1)求椭圆的离心率;
(2)若y轴被△ABC的外接圆所截得弦长为9,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=$\frac{1}{2}$,an+1=an+$\frac{1}{n^2}$an2
(Ⅰ)求a2,a3的值;
(Ⅱ)证明:an<n(n∈N*);
(Ⅲ)当n≥3(n∈N*)时,证明:an>$\frac{6n}{5n+6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一机器元件的三视图及尺寸如图所示(单位:dm),则该组合体的体积为(  )
A.80 dm3B.88 dm3C.96 dm3D.120 dm3

查看答案和解析>>

同步练习册答案