精英家教网 > 高中数学 > 题目详情
14.已知44(k)=36,把67转化为k进制数为(  )
A.55(k)B.67(k)C.103(k)D.124(k)

分析 首先由已知求k的值,然后依次除以8,求余数,最后把余数从下到上连接起来即为8进制数.

解答 解:∵44(k)=36,
∴4×k1+4×k0=36,可解得:k=8,
∴67÷8=8…3
8÷8=1…0
1÷8=0…1
即67转化为k进制数为:103(8)
故选:C.

点评 本题考查算法的概念,以及进位制的运算,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,A是椭圆C的一
个顶点,B是直线AF1与椭圆C的另一个交点,∠F1AB=90°,△F1AB的面积为$\frac{4}{3}$
(1)求椭圆C的方程
(2)设P是椭圆C上的一个动点,点P关于原点的对称点为Q,求$\overrightarrow{BP}$•$\overrightarrow{BQ}$的取值
围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,A,B,C是椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC.
(1)求椭圆的离心率;
(2)若y轴被△ABC的外接圆所截得弦长为9,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=$\frac{1}{2}$,an+1=an+$\frac{1}{n^2}$an2
(Ⅰ)求a2,a3的值;
(Ⅱ)证明:an<n(n∈N*);
(Ⅲ)当n≥3(n∈N*)时,证明:an>$\frac{6n}{5n+6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知定点M(0,4),动点P在圆x2+y2=4上,则$\overrightarrow{MP}$•$\overrightarrow{OP}$的取值范围是[-4,12].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在区间(0,2]里任取两个数x、y,分别作为点P的横、纵坐标,则点P到点A(-1,1)的距离小于$\sqrt{2}$的概率为(  )
A.$\frac{4-π}{8}$B.$\frac{π-2}{4}$C.$\frac{4-π}{4}$D.$\frac{π-2}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,A、B、C构成直角三角形,∠A=90°,斜边端点B,C的坐标分别为(-2,0)和(2,0),设斜边BC上高线的中点为M,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一机器元件的三视图及尺寸如图所示(单位:dm),则该组合体的体积为(  )
A.80 dm3B.88 dm3C.96 dm3D.120 dm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{PB}$,$\overrightarrow{AB}$=λ$\overrightarrow{BP}$,则λ的值为$-\frac{4}{3}$.

查看答案和解析>>

同步练习册答案