分析 (1)把已知的数列递推式变形,得到${a}_{n+1}=\frac{1}{2-{a}_{n}}$,然后代入$\frac{1}{{a}_{n+1}-1}-\frac{1}{{a}_{n}-1}$即可得到答案;
(2)由(1)中的等差数列求出数列{an}的通项公式,代入bn=$\frac{{{a_{n+1}}}}{a_n}$-1并整理,然后利用裂项相消法求数列{bn}的前n项和后得答案.
解答 证明:(1)由$\frac{{{a_{n+1}}}}{{{a_{n+1}}-1}}$-$\frac{1}{{{a_n}-1}}$=0,得$\frac{{{a_{n+1}}}}{{{a_{n+1}}-1}}$=$\frac{1}{{{a_n}-1}}$,
∴$\frac{{a}_{n+1}-1}{{a}_{n+1}}={a}_{n}-1$,即$1-\frac{1}{{a}_{n+1}}={a}_{n}-1$,∴${a}_{n+1}=\frac{1}{2-{a}_{n}}$.
则$\frac{1}{{a}_{n+1}-1}-\frac{1}{{a}_{n}-1}=\frac{1}{\frac{1}{2-{a}_{n}}-1}-\frac{1}{{a}_{n}-1}$=$\frac{1-{a}_{n}}{{a}_{n}-1}=-1$.
∴数列{$\frac{1}{{{a_n}-1}}$}是以-1为公差的等差数列;
(2)由数列{$\frac{1}{{{a_n}-1}}$}是以-1为公差的等差数列,且$\frac{1}{{a}_{1}-1}=\frac{1}{\frac{1}{2}-1}=-2$,
∴$\frac{1}{{a}_{n}-1}=-2-(n-1)=-(n+1)$,则${a}_{n}=\frac{n}{n+1}$.
bn=$\frac{{{a_{n+1}}}}{a_n}$-1=$\frac{\frac{n+1}{n+2}}{\frac{n}{n+1}}-1=\frac{1}{n(n+2)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
Sn=b1+b2+…+bn=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2})$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{3}{4}-\frac{1}{2(n+1)}-\frac{1}{2(n+2)}<\frac{3}{4}$.
点评 本题考查了数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的和,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com