精英家教网 > 高中数学 > 题目详情
2.某人从东西走向的河的南岸向东北方向游去,游了100m后没有到岸边,随后,他随意选定了一个方向继续游,求这个人游100m之内能够到达南岸边的概率.

分析 由题意画出图形,由测度比为角度比求得答案.

解答 解:如图所示,

某人从B沿北偏东45°方向游了100m到达O点处,由图可知,
∠OBA=45°,OA=OB=100m,在点O处只有向阴影方向游100m之内才能到达岸边,
故所求的概率为P=$\frac{90°}{360°}=\frac{1}{4}$.

点评 本题考查几何概型及其概率计算公式,关键是对题意的理解,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.直线l与椭圆$\frac{{x}^{2}}{4}$+y2=1相交于A,B两点,若弦AB中点为(-1,$\frac{1}{2}$),则直线l的方程为x-2y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明函数f(x)=loga$\frac{{a}^{x}+1}{2}$(a>1)在[0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}中,a2+a9=a6,则其前9项和S9的值为(  )
A.-2B.0C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{bn}通项公式bn=log2$\frac{2n+2}{2n+1}$,求前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,
(1﹚求证:$\frac{{a}^{2}-{b}^{2}}{{c}^{2}}$=$\frac{sin(A-B)}{sinC}$
﹙2﹚若b=acosC,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在等差数列{an}中,
(1)已知d=3,an=20,Sn=65,求n;
(2)已知a11=-1,求S21
(3)已知an=11-3n,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若$\frac{3sinα-cosα}{sinα+3cosα}$=1,求:
(1)tanα的值;
(2)$\frac{sinα+cosα}{sinα-cosα}$+cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在△ABC中,|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=2,∠BAC=90°,D,E,F分别是边BC,CA,AB上的点且$\overrightarrow{CE}$=$\frac{1}{4}\overrightarrow{CA}$,$\overrightarrow{AF}$=$\frac{1}{4}\overrightarrow{AB}$,$\overrightarrow{BD}$=$\frac{1}{4}\overrightarrow{BC}$,则$\overrightarrow{DE}$•$\overrightarrow{DF}$的值为$\frac{11}{2}$.

查看答案和解析>>

同步练习册答案