精英家教网 > 高中数学 > 题目详情
11.在△ABC中,已知AB=2,AC=3,∠CAB=60°点P在线段AB上,满足$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,若$\overrightarrow{CP}$•$\overrightarrow{AB}$=$\overrightarrow{PA}•$$\overrightarrow{PB}$,则实数的λ值为$\frac{1}{2}$.

分析 运用向量的三角形法则和向量的数量积的定义和性质:向量的平方即为模的平方,计算即可得到所求值.

解答 解:若$\overrightarrow{CP}$•$\overrightarrow{AB}$=$\overrightarrow{PA}•$$\overrightarrow{PB}$,
则($\overrightarrow{CA}$+$\overrightarrow{AP}$)•$\overrightarrow{AB}$=-$\overrightarrow{AP}$•($\overrightarrow{AB}$-$\overrightarrow{AP}$),
由$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,
即有($\overrightarrow{CA}$+$λ\overrightarrow{AB}$)•$\overrightarrow{AB}$=-$λ\overrightarrow{AB}$•($\overrightarrow{AB}$-λ$\overrightarrow{AB}$),
则$\overrightarrow{CA}$•$\overrightarrow{AB}$+$λ{\overrightarrow{AB}}^{2}$=-$λ{\overrightarrow{AB}}^{2}$+λ2${\overrightarrow{AB}}^{2}$,
由AB=2,AC=3,∠CAB=60°,
则$\overrightarrow{CA}$•$\overrightarrow{AB}$=3×2×(-$\frac{1}{2}$)=-3,
即有-3+4λ=-4λ+4λ2
解得λ=$\frac{1}{2}$或$\frac{3}{2}$(舍去).
故答案为:$\frac{1}{2}$.

点评 本题考查向量的三角形法则和数量积的定义及性质,主要考查向量的平方即为模的平方,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.甲船在B岛的正南A处,AB=10km,甲船以4km/h的速度向正北航行,乙船自B岛出发以6km/h的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们航行的时间为$\frac{150}{7}$min.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设向量$\overrightarrow{a}$、$\overrightarrow{b}$不共线,若实数t0满足:对任意实数t,恒有|$\overrightarrow{a}$+t$\overrightarrow{b}$|≥|$\overrightarrow{a}$+t0$\overrightarrow{b}$|,则t0=(  )
A.-$\frac{\overrightarrow{a}•\overrightarrow{b}}{{\overrightarrow{a}}^{2}}$B.-$\frac{\overrightarrow{a}•\overrightarrow{b}}{{\overrightarrow{b}}^{2}}$C.$\frac{\overrightarrow{a}•\overrightarrow{b}}{{\overrightarrow{a}}^{2}}$D.$\frac{\overrightarrow{a}•\overrightarrow{b}}{{\overrightarrow{b}}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知相关变量x,y之间的一组数据如下表所示,回归直线$\widehaty=\widehatbx+\widehata$所表示的直线经过的定点为(1.5,5),
则mn=12.
x01n3
y8m24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设等比数列{an}的前n项和为Sn,a3=$\frac{1}{8}$,且S2+$\frac{1}{16}$,S3、S4成等差数列,数列{bn}满足bn=8n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记数列{bn}的前n项和为Tn,求数列{an+$\frac{1}{{T}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.二次函数f(x)的图象经过点(0,$\frac{3}{2}$),且f′(x)=-x-1,则不等式f(10x)>0的解集为(  )
A.(-3,1)B.(-lg3,0)C.($\frac{1}{1000}$,1)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知${({{x^2}-\frac{1}{x}})^n}$展开式中二项式系数之和为1024,则含x2项的系数为210.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若α是第二象限的角,求$\frac{sinα}{\sqrt{1-co{s}^{2}α}}$+$\frac{cosα}{\sqrt{1-si{n}^{2}α}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{16}+\frac{y^2}{12}=1$的右焦点为F,右顶点为A,离心率为e,点P(m,0)(m>4)满足条件$\frac{|FA|}{|AP|}=e$.
(Ⅰ)求m的值;
(Ⅱ)设过点F的直线l与椭圆C相交于M,N两点,记△PMF和△PNF的面积分别为S1,S2,求证:$\frac{S_1}{S_2}=\frac{|PM|}{|PN|}$.

查看答案和解析>>

同步练习册答案