精英家教网 > 高中数学 > 题目详情
1.已知△ABC的三边长成公差为2的等差数列,且最大角的正弦值为$\frac{\sqrt{3}}{2}$,则这个三角形最小值的正弦值是$\frac{3\sqrt{3}}{14}$.

分析 设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,求出a=c+4和b=c+2,由边角关系和条件求出sinA,求出A=60°或120°,再判断A的值,利用余弦定理能求出三边长,由余弦定理和平方关系求出这个三角形最小值的正弦值.

解答 解:不妨设三角形的三边分别为a、b、c,且a>b>c>0,
设公差为d=2,三个角分别为、A、B、C,
则a-b=b-c=2,可得b=c+2,a=c+4,
∴A>B>C,
∵最大角的正弦值为$\frac{\sqrt{3}}{2}$,∴sinA=$\frac{\sqrt{3}}{2}$,
由A∈(0°,180°)得,A=60°或120°,
当A=60°时,∵A>B>C,∴A+B+C<180°,不成立;
即A=120°,则cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{(c+2)}^{2}+{c}^{2}-{(c+4)}^{2}}{2c(c+2)}$=$-\frac{1}{2}$,
化简得$\frac{c-6}{2c}=-\frac{1}{2}$,解得c=3,
∴b=c+2=5,a=c+4=7,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{49+25-9}{2×7×5}$=$\frac{13}{14}$,
又C∈(0°,180°),则sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{3\sqrt{3}}{14}$,
∴这个三角形最小值的正弦值是$\frac{3\sqrt{3}}{14}$,
故答案为:$\frac{3\sqrt{3}}{14}$.

点评 本题考查等差中项的性质,余弦定理,以及三角形边角关系的应用,考查了方程与转化思想,运算求解能力,推理论证能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC=$\frac{1}{2}$CP=2,D是CP的中点,将△PAD沿AD折起,使得PD⊥面ABCD.

(1)求证:平面PAD⊥平面PCD;
(2)若E是PC的中点,求三棱锥D-PEB的体积.
(3)若E在CP上且二面角E-BD-C所成的角为45°,求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x轴是曲线f(x)=lnx-kx+3的一条切线,则k=e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2-2x-1.
(Ⅰ)求函数f(x)的单调区间,并作出简图
(Ⅱ)求函数f(x)在区间[-3,3]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=2x-2-x,a=(${\frac{7}{9}}$)${\;}^{\frac{1}{2}}}$,b=(${\frac{9}{7}}$)${\;}^{\frac{1}{2}}}$,c=log2$\frac{7}{9}$,则f(a),f(b),f(c)的大小顺序为(  )
A.f(b)<f(a)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(b)<f(c)<f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(n)=24+27+210+…+23n+10(n∈N),则f(n)=$\frac{16({8}^{n+3}-1)}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.log0.72,log0.70.8,0.9-2的大小顺序是(  )
A.log0.72<log0.70.8<0.9-2B.log0.70.8<log0.72<0.9-2
C.0.9-2<log0.72<log0.70.8D.log0.72<0.9-2<log0.70.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知条件p:|x+1|>2,条件q:x2-5x+6<0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期与单调递减区间;
(2)若f(α)=$\frac{5}{3}$,求cos(α-$\frac{π}{6}$)的值.

查看答案和解析>>

同步练习册答案