分析 先将问题转化为二项式(x+1)7的系数问题,利用二项展开式的通项公式求出展开式的第r+1项,令x的指数分别等于1,2求出特定项的系数
解答 解:(1+x)7(1-x)的展开式中x2的系数等于(x+1)7展开式的x的系数的相反数加上(x+1)7展开式的x2的系数
(x+1)7展开式的通项为Tr+1=C7rx7-r
令7-r=1,得r=6故(x+1)7展开式的x的系数为C76=7
令7-r=2得r=5故(x+1)7展开式的x2的系数为C75=21
故展开式中x2的系数是-7+21=14
故答案为:14.
点评 本题主要考查等价转化的能力、考查利用二项展开式的通项公式解决二项展开式的特定项问题,属于基础题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最小正周期为$\frac{π}{2}$的奇函数 | B. | 最小正周期为$\frac{π}{2}$的偶函数 | ||
| C. | 最小正周期为π的奇函数 | D. | 最小正周期为π的偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 13 | B. | 2 | C. | $\frac{13}{2}$ | D. | $\frac{2}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -$\frac{1}{2}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com