精英家教网 > 高中数学 > 题目详情
20.若程序框图如图所示,则程序运行后输出的值是(  )
A.2B.3C.4D.5

分析 模拟执行程序框图,根据条件依次写出每次循环得到的n,i的值,当满足条件n=5时退出循环,输出i的值为5.

解答 解:模拟执行程序框图,可得
n=12,i=1
不满足条件n是奇数,n=6,i=2,不满足条件n=5,
不满足条件n是奇数,n=3,i=3,不满足条件n=5,
满足条件n是奇数,n=10,i=4,不满足条件n=5,
不满足条件n是奇数,n=5,i=5,满足条件n=5,
退出循环,输出i的值为5.
故选:D.

点评 本题主要考查了循环结构的程序框图,根据条件依次写出每次循环得到的n,i的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在一个盒子中装有标号为1、3、5、7、9的五个球,现从中一次性取出两个球,每个小球被取出的可能性相等.
(Ⅰ)写出从中一次性取出两个小球全部可能的所有结果;
(Ⅱ求取出两个球上标号之和能被4整除的概率;
(Ⅲ)将取出两个球按较小标号为横坐标,较大标号为纵坐标,确定点,求这些点落在直线y=x+2上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知两动圆${F_1}:{(x+\sqrt{3})^2}+{y^2}={r^2}$和${F_2}:{(x-\sqrt{3})^2}+{y^2}={(4-r)^2}$(0<r<4),把它们的公共点的轨迹记为曲线C,若曲线C与y轴的正半轴的交点为M,且曲线C上的相异两点A、B满足:$\overrightarrow{MA}•\overrightarrow{MB}$=0.
(1)求曲线C的方程;
(2)若A的坐标为(-2,0),求直线AB和y轴的交点N的坐标;
(3)证明直线AB恒经过一定点,并求此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某同学在一次综合性测试中语文、数学、英语、科学、社会5门学科的名次在其所在班级里都不超过3(记第一名为1,第二名为2,第三名为3,依此类推且没有并列名次情况),则称该同学为超级学霸,现根据不同班级的甲、乙、丙、丁四位同学对一次综合性测试名次数据的描述,一定可以推断是超级学霸的是(  )
A.甲同学:平均数为2,中位数为2B.乙同学:中位数为2,唯一的众数为2
C.丙同学:平均数为2,标准差为2D.丁同学:平均数为2,唯一的众数为2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,已知圆C过点A(0,0)和B(0,4)且与直线x+y-4=0相切,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1与圆C的一个焦点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)试探究:圆C上是否存在异于原点的点Q,使得点Q到椭圆的右焦点F的距离等于线段OF的长?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,Sn=2-($\frac{2}{n}$+1)•an,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{2n•an}的前n项和为Tn,An=$\frac{1}{{T}_{1}}$+$\frac{1}{{T}_{2}}$+$\frac{1}{{T}_{3}}$+…+$\frac{1}{{T}_{n}}$,比较An与$\frac{2}{n•{a}_{n}}$大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设等比数列{an}中,前n项和为Sn,已知S3=8,S6=7,则a7+a8+a9=(  )
A.8B.6C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,在矩形ABCD中,AB=2,BC=1,将△ACD沿矩形的对角线AC翻折,得到如图2所示的几何体D-ABC,使得BD=$\sqrt{3}$.
(1)求证:AD⊥BC;
(2)若在CD上存在点P,使得VP-ABC=$\frac{1}{2}$VD-ABC,求二面角P-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3+ax2+bx+c(a,b为常数)的图象过原点,且有x=1的切线为y=-$\frac{1}{2}$.
(1)求f(x)的解析式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案