分析 (1)分组分别利用等差数列与等比数列的前n项和公式即可得出;
(2)对a分类讨论,分别利用等差数列与等比数列的前n项和公式即可得出.
解答 解:(1)原式=(2+4+…+2n)+($\frac{1}{3}$+$\frac{1}{9}$+…+$\frac{1}{{3}^{n}}$)=$\frac{n(2+2n)}{2}$+$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=n2+n+$\frac{1}{2}(1-\frac{1}{{3}^{n}})$.
(2)当a=0时,原式=-1-2-…-n=$-\frac{n(n+1)}{2}$;
当n=1时,原式=(1-1)+(1-2)+…(1-n)=n$-\frac{n(n+1)}{2}$=$\frac{n-{n}^{2}}{2}$;
当n≠0,1时,原式=(a+a2+…+an)+(-1-2-…-n)=$\frac{a({a}^{n}-1)}{a-1}$-$\frac{n(1+n)}{2}$.
点评 本题考查了等比数列的通项公式及其前n项和公式,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $1+\sqrt{2}$ | B. | 2 | C. | $\frac{1}{6}$ | D. | $\frac{1}{2}+\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com