精英家教网 > 高中数学 > 题目详情
3.已知函数y=3sin(2x+$\frac{π}{6}$).
(1)求函数的单调增区间;
(2)当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,求函数值的取值范围;
(3)若将此图象向右平移θ(θ>0)个单位后图象关于y轴对称,求θ的最小值.

分析 (1)由条件利用正弦函数的增区间求得函数的单调增区间.
(2)由条件利用正弦函数的定义域和值域,求得函数值的取值范围.
(3)由条件利用函数y=Asin(ωx+φ)的图象变换规律、正弦函数、余弦函数的图象的对称性,求得θ=$\frac{nπ}{2}$+$\frac{π}{6}$,n∈z,可得θ的最小值.

解答 解:(1)对于函数y=3sin(2x+$\frac{π}{6}$),令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈z,
求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,可得函数的增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈z.
(2)当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],∴sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
∴f(x)=3sin(2x+$\frac{π}{6}$)∈[-$\frac{3}{3}$,3].
(3)若将此图象向右平移θ(θ>0)个单位后,可得y=3sin[2(x-θ)+$\frac{π}{6}$]=3sin(2x+$\frac{π}{6}$+2θ)的图象.
再根据所得图象关于y轴对称,可得$\frac{π}{6}$+2θ=nπ+$\frac{π}{2}$,n∈z,即θ=$\frac{nπ}{2}$+$\frac{π}{6}$,故θ的最小值为$\frac{π}{6}$.

点评 本题主要考查正弦函数的增区间,正弦函数的定义域和值域,函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设0为△ABC内一点,若?k∈R,有|$\overrightarrow{OA}-\overrightarrow{OB}-k\overrightarrow{BC}$|≥|$\overrightarrow{OA}-\overrightarrow{OC}$|,则△ABC的形状是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=sinx的图象向左平移$\frac{π}{4}$个单位长度,再向上平移1个单位长度,所得图象的函数解析式是y=sin(x+$\frac{π}{4}$)+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知方程x2+bx+a=0有一个根为x=-1,求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:
(1)(2+$\frac{1}{3}$)+(4+$\frac{1}{9}$)+…+(2n+$\frac{1}{{3}^{n}}$)
(2)(a-1)+(a2-2)+…+(an-n)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知-$\frac{π}{6}$<x<$\frac{π}{3}$,且cosx=1-m,则m的取值范围为[0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知四个数依次成等差数列,和为16,平方和为84  求这四个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个空间几何体的三视图如图所示,则这个几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{3}$x2-ax+4(a>0);
(1)求函数f(x)的单调区间及极值;
(2)当x∈[-3,3]时,函数y=f(x)的图象上任意一点的切线斜率恒小于1,求实数a的取值范围.

查看答案和解析>>

同步练习册答案