精英家教网 > 高中数学 > 题目详情
11.在△ABC中,内角A,B,C的对边长分别为a,b,c,已知a2-c2=2b,且sinAcosC=3cosAsinC.
(Ⅰ)求b;
(Ⅱ)若a=6,求△ABC的面积.

分析 (Ⅰ)由条件利用余弦定理求得$\frac{{b}^{2}}{2}$=2b,由此求得b的值.
(Ⅱ)根据a=6,b=4,a2-c2=2b,求得c=2$\sqrt{7}$,余弦定理求得cosC的值,可得C的值,再根据△ABC的面积S=$\frac{1}{2}$ab•sinC,计算求得结果.

解答 解:(Ⅰ)△ABC中,内角A,B,C的对边长分别为a,b,c,∵已知a2-c2=2b,且sinAcosC=3cosAsinC
∴a•$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=3•c•$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$,∴2(a2-c2)=b2,∴$\frac{{b}^{2}}{2}$=2b,∴b=4.
(Ⅱ)∵a=6,b=4,a2-c2=2b,∴c=2$\sqrt{7}$,∴cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{1}{2}$,∴C=$\frac{π}{3}$,
∴△ABC的面积S=$\frac{1}{2}$ab•sinC=6$\sqrt{3}$.

点评 本题主要考查余弦定理、正弦定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知a,b是两条不同的直线,α、β是两个不同的平面,下列说法中正确的是(  )
A.若a∥b,a∥α,则b∥αB.若a⊥b,a⊥α,b⊥β,则α⊥β
C.若α⊥β,a⊥β,则a∥αD.若α⊥β,a∥α,则a⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆和双曲线有相同的焦点F(5,0)和F(-5,0),其离心率e满足方程 6e2-17e+5=0,求椭圆和双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若集合A={x|-1<x≤3},B={x|x=2n-1,n∈N},则A∩B中元素个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.小华同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系xOy,x轴在地平面上的球场中轴线上,y轴垂直于地平面,单位长度为1米.已知若不考虑球网的影响,网球发射后的轨迹在方程=$\frac{1}{2}$kx-$\frac{1}{80}$(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.发射器的射程是指网球落地点的横坐标.

(1)求发射器的最大射程;
(2)请计算k在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标a最大为多少?并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求证:f(x)=$\frac{{{a^x}-{a^{-x}}}}{2}$(a>0且a≠1)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.六棱锥P-ABCDEF中,底面是正六边形,顶点在底面的射影是底面正多边形中心,G为PB的中点,则三棱锥D-GAC与三棱锥P-GAC体积之比为(  )
A.1:1B.1:2C.2:1D.3:2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F1,F2是椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$的两个焦点,P是椭圆上的一点,若△PF1F2的内切圆半径为1,则∠F1PF2的余弦值为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如果直线2x-y+m=0与圆x2+(y-2)2=5相切,那么m的值为-3或7.

查看答案和解析>>

同步练习册答案