精英家教网 > 高中数学 > 题目详情
本小题满分12分
如图,在直三棱柱ABC—A1B1C1中,AC=1,AB=,BC=,AA1=
(I)求证:A1B⊥B1C;
(II)求二面角A1—B1C—B的大小。

I)由AC=1,AB=,BC=知AC2+AB2=BC2
所以AC⊥AB。
因为ABC—A1B1C1是直三棱柱,面ABB1A1⊥面ABC,
所以AC⊥面ABB1A1。………………3分
,知侧面ABB1A1是正方形,连结AB1
所以A1B⊥AB1
由三垂线定理得A1B⊥B1C。 ………………6分
(II)作BD⊥B1C,垂足为D,连结A1D。
由(I)知,A1B⊥B1C,则B1C⊥面A1BD,
于是B1C⊥A1D,
则∠A1DB为二面角
A1—B1C—B的平面角。………………8分

∴Rt△A1B1C≌Rt△B1BC,

故二面角A1—B1C—B的大小为………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图5,在三棱柱中,侧棱底面,的中点,
,.
(1)求证:平面
(2) 求四棱锥的体积.  图5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱锥中,,底面为正方形,分别是的中点.
(1) 求证: ;
(2)求二面角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知中,平面
分别为上的动点.
(1)若,求证:平面平面
(2)若,求平面与平面所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:在正方体ABCDA1B1C1D1中,MNP分别为所在边的中点,O为面对角线A1C1的中点.
(1) 求证:面MNP∥面A1C1B;(2) 求证:MO⊥面A1C1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在四棱锥中,底面为矩形,平面⊥平面,,的中点,求证:
(1)∥平面
(2)平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在三棱柱中,侧面均为正方形,∠,点是棱的中点.

(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,一几何体的三视图如下:则这个几何体是(   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则,推广到空间可以得到类似结论;已知正四面体P—ABC的内切球体积为V1,外接球体积为V2,则         

查看答案和解析>>

同步练习册答案