精英家教网 > 高中数学 > 题目详情
20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),直线x=$\frac{{a}^{2}}{c}$(c是椭圆的焦距长的一半)交x轴于A点,椭圆的上顶点为B,过椭圆的右焦点F作垂直于x轴的直线交椭圆的第一象限于P点,交AB于D点,若点D满足2$\overrightarrow{OD}$=$\overrightarrow{OF}$+$\overrightarrow{OP}$(O为坐标原点).
(I)求椭圆的离心率;
(II)若半焦距为3,过点A的直线l交椭圆于两点M、N,问在x轴上是否存在定点C使$\overrightarrow{CM}$•$\overrightarrow{CN}$为常数?若存在,求出C点的坐标及该常数值;若不存在,请说明理由.

分析 (I)由题意分别求得D、F和P点坐标,根据向量加法的坐标表示求得a和b的关系、由椭圆的性质a2=b2+c2及e=$\frac{c}{a}$即可求得e;
(II)由c=3,即可求得椭圆方程,并求得过点A的直线方程,代入椭圆方程,求得关于x的一元二次方程,由△>0求得k的取值范围,利用韦达定理,表示出$\overrightarrow{CM}$•$\overrightarrow{CN}$,令$\overrightarrow{CM}$•$\overrightarrow{CN}$=u,(整理68+4n2-32n-4u)k2+n2-u-12=0,对任意k∈(-$\frac{3}{4}$,$\frac{3}{4}$)都成立,求得关于n和u的二元一次方程组,即可求得n的值,求得C点坐标.

解答 解:(I)由题意可知:A($\frac{{a}^{2}}{c}$,0),B(0,b),
直线AB的方程是:$\frac{cx}{{a}^{2}}+\frac{y}{b}=1$,将x=c代入,得y=$\frac{{b}^{2}}{{a}^{2}}$,
∴D(0,$\frac{{b}^{2}}{{a}^{2}}$),将x=c代入$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,得y=±$\frac{{b}^{2}}{a}$(舍负),
∴P(0,$\frac{{b}^{2}}{{a}^{2}}$),
∵2$\overrightarrow{OD}$=$\overrightarrow{OF}$+$\overrightarrow{OP}$,
∴2(0,$\frac{{b}^{2}}{{a}^{2}}$)=(c,0)+(0,$\frac{{b}^{2}}{{a}^{2}}$),整理得:$\frac{2{b}^{2}}{{a}^{2}}$=$\frac{{b}^{2}}{a}$,即a=2b,
∵a2=b2+c2
∴e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
椭圆的离心率$\frac{\sqrt{3}}{2}$;
(II)当c=3时,椭圆的方程为:$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{3}=1$,过A(4,0)的直线方程为y=k(x-4),
将直线方程代入椭圆方程消去y,整理得:(1+4k2)x2-32k2x+64k2-12=0,
∴△=(-32k2)-4(1+4k2)(64k2-12)=-4(16k2-12)>0,
解得:k2<$\frac{3}{4}$,
假设存在点C(n,0),使得$\overrightarrow{CM}$•$\overrightarrow{CN}$为常数,设M(x1,y1),N(x2,y2),
由韦达定理可知:x1+x2=$\frac{32{k}^{2}}{1+4{k}^{2}}$,x1•x2=$\frac{64{k}^{2}-12}{1+4{k}^{2}}$,
$\overrightarrow{CM}$•$\overrightarrow{CN}$=(x1-n,y1)•(x2-n,y2),
=(x1-n)•(x2-n)+y1•y2
=(x1-n)•(x2-n)+k2(x1-4)(x2-4),
=(1+k2)x1•x2-(n+4k2)(x1+x2)+n2+16k2
=(1+k2)×$\frac{32{k}^{2}}{1+4{k}^{2}}$-(n+4k2)×$\frac{64{k}^{2}-12}{1+4{k}^{2}}$+n2+16k2=u,
整理得:(68+4n2-32n-4u)k2+n2-u-12=0,对任意k2<$\frac{3}{4}$都成立,
∴$\left\{\begin{array}{l}{68+4{n}^{2}-32n-4u=0}\\{{n}^{2}-u-12=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{n=\frac{29}{8}}\\{u=\frac{73}{64}}\end{array}\right.$,
故在x轴上存在点($\frac{29}{8}$,0)使为常数.

点评 本题考查椭圆的标准方程及简单性质,考查一元二方程根与系数的关系,向量的坐标表示,考查分析问题、解决问题及计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=loga(x+b)的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若A,B任意两个集合,I为全集,且$\overline{A}$?$\overline{B}$,则A,B的包含关系为(  )
A.B?AB.B?AC.A?BD.A?B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=cosx(sinx-$\sqrt{3}$cosx)+$\frac{\sqrt{3}}{2}$.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值及取得最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数sinθ-$\sqrt{3}$cosθ=-2,则三角式sin2θ+cos2θ+3的值为(  )
A.$\frac{15}{4}$B.$\frac{15}{2}$C.-$\frac{15}{4}$D.-$\frac{15}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+3x-3-kex
(I) 当x≥-5时,f(x)≤0,求k的取值范围;
(II) 当k=-1时,求证:f(x)>-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为迎接全国文明城市考核组大检查,教育局拟派宣传科5名科室人员同时到3所学校督办迎检工作的落实情况,每校至少1人,最多2人,临行前科室人员甲要参加一个紧急会议不能同去,需要重新分工,则重新分工数比原定分工数减少了(  )
A.36种B.54种C.72种D.118种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A、B是抛物线y2=2px(p>0)上的两点,O为坐标原点,$\overrightarrow{OA}$•$\overrightarrow{OB}=0$,若直线AB与直线kx+y+2k=0距离的最大值是4,则p的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z=$\frac{i^8}{1-i}$(其中i为虚数单位,则复数z的共轭复数$\overline z$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案