| A. | $\frac{15}{4}$ | B. | $\frac{15}{2}$ | C. | -$\frac{15}{4}$ | D. | -$\frac{15}{2}$ |
分析 由已知结合辅助角公式求得θ,再由同角三角函数的基本关系式化简求得答案.
解答 解:∵sinθ-$\sqrt{3}$cosθ=-2,
∴$2sin(θ-\frac{π}{3})=-2$,则sin($θ-\frac{π}{3}$)=-1,
∴$θ-\frac{π}{3}=-\frac{π}{2}+2kπ,k∈Z$,
则$θ=-\frac{π}{6}+2kπ,k∈Z$.
∴$cos2θ=cos(-\frac{π}{3}+2kπ)=\frac{1}{2}$,
∴sin2θ+cos2θ+3=$\frac{1-cos2θ}{2}+cos2θ+3=\frac{7}{2}+\frac{cos2θ}{2}$
=$\frac{7}{2}+$$\frac{1}{4}=\frac{15}{4}$.
故选:A.
点评 本题考查同角三角函数基本关系式的运用,考查三角函数值的求法,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{{\sqrt{7}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{2}π}}{3}$ | B. | $\frac{{4\sqrt{2}π}}{3}$ | C. | $2\sqrt{2}π$ | D. | $\frac{{8\sqrt{2}π}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com