分析 (1)先求出函数f(x)的定义域为(-1,1),对任意x∈(-1,1),求出f(-x)=-f(x),由此得到函数f(x)是奇函数.
(2)由a>1,f(x)>0,得loga(x+1)>loga(1-x),由此利用对数函数性质能求出不等式f(x)>0的解集.
解答 解:(1)由题知$\left\{\begin{array}{l}{x+1>0}\\{1-x>0}\end{array}\right.$,解得:-1<x<1,
∴函数f(x)的定义域为(-1,1),f(x)是奇函数.
证明:∵函数f(x)的定义域为(-1,1),所以对任意x∈(-1,1),
f(-x)=loga(-x+1)-loga(1-(-x))=-[loga(x+1)-loga(1-x)]=-f(x),
所以函数f(x)是奇函数.
(2)∵a>1,f(x)>0,∴loga(x+1)>loga(1-x),
∴$\left\{\begin{array}{l}{x+1>0}\\{1-x>0}\\{x+1>1-x}\end{array}\right.$,解得0<x<1,
所以不等式f(x)>0的解集为{x|0<x<1}.
点评 本题考查函数的奇偶性的判断与证明,考查不等式的解法,是中档题,解题时要认真审题,注意对数函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)的周期是$\frac{π}{2}$ | |
| B. | f(x)的值域是{y|y∈R,且y≠0} | |
| C. | 直线x=$\frac{5π}{3}$是函数f(x)图象的一条对称轴 | |
| D. | f(x)的单调递减区间是(2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$],k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{4}$ | B. | $\frac{15}{2}$ | C. | -$\frac{15}{4}$ | D. | -$\frac{15}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 高血压 | 非高血压 | 总计 | |
| 年龄20到39 | 12 | c | 100 |
| 年龄40到60 | b | 52 | 100 |
| 总计 | 60 | a | 200 |
| P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com