精英家教网 > 高中数学 > 题目详情
10.已知复数z=$\frac{i^8}{1-i}$(其中i为虚数单位,则复数z的共轭复数$\overline z$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 根据复数的运算性质化简z,求出z的共轭复数,从而求出其对应的象限即可.

解答 解:z=$\frac{i^8}{1-i}$=$\frac{1}{1-i}$=$\frac{1+i}{(1-i)(1+i)}$=$\frac{1}{2}$+$\frac{1}{2}$i,
则复数z的共轭复数$\overline z$=$\frac{1}{2}$-$\frac{1}{2}$i,
$\overline z$对应的点位于第四象限,
故选:D.

点评 本题考查了复数的运算性质,考查共轭复数的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),直线x=$\frac{{a}^{2}}{c}$(c是椭圆的焦距长的一半)交x轴于A点,椭圆的上顶点为B,过椭圆的右焦点F作垂直于x轴的直线交椭圆的第一象限于P点,交AB于D点,若点D满足2$\overrightarrow{OD}$=$\overrightarrow{OF}$+$\overrightarrow{OP}$(O为坐标原点).
(I)求椭圆的离心率;
(II)若半焦距为3,过点A的直线l交椭圆于两点M、N,问在x轴上是否存在定点C使$\overrightarrow{CM}$•$\overrightarrow{CN}$为常数?若存在,求出C点的坐标及该常数值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某大学生对自己课余时间所开网店的某商品20天的日销量统计如表:
售价(单位:元)232120
日销量(单位:个)101520
频数4142
且此商品进价均为每个15元.
(1)根据上表数据,求这20天的日利润的平均数及方差;
(2)若该同学每晚18:30-21:30雇用一名同学做客服,预计日销量可提高40%,但需支付客服每晚35元,问增加客服后是否会提高日平均利润?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将5名实习教师分配到高一年级的4个班实习,每班至少1名,最多2名,则不同的分配方案有240种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示的几何体中,四边形ABCD是边长为$\sqrt{2}$的正方形,矩形ADD1A1所在的平面垂直于平面ABCD,且AA1=2,则该几何体ABCD-A1D1的外接球的体积是(  )
A.$\frac{{2\sqrt{2}π}}{3}$B.$\frac{{4\sqrt{2}π}}{3}$C.$2\sqrt{2}π$D.$\frac{{8\sqrt{2}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1.现以AD为一边向梯形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面 ADEF与平面ABCD垂直,M为ED的中点,如图2.

(1)求证:AM∥平面BEC;
(2)求证:BC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,矩形ABCD所在的平面和正方形ADD1A1所在的平面互相垂直,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)当E为AB的中点时,求点E到平面ACD1的距离;
(2)当AE等于何值时,二面角D1-EC-D的大小为$\frac{π}{4}$?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:?x∈R,使得x2+4x+6<0,则下列说法正确的是(  )
A.¬p:?x∈R,使得x2+4x+6≥0,为真命题B.¬p:?x∈R,使得x2+4x+6≥0,为假命题
C.¬p:?x∈R,使得x2+4x+6≥0,为真命题D.¬p:?x∈R,使得x2+4x+6≥0,为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知△ABC是边长为1的正三角形,动点M在平面ABC内,若$\overrightarrow{AM}•\overrightarrow{AB}<0$,$|\overrightarrow{CM}|=1$,则$\overrightarrow{CM}•\overrightarrow{AB}$的取值范围是[-1,-$\frac{1}{2}$).

查看答案和解析>>

同步练习册答案