精英家教网 > 高中数学 > 题目详情
2.△ABC的内角A,B,C所对的边分别为a,b,c.且a:b:c=3:5:7试判断该三角形的形状(  )
A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形

分析 设a=3t,b=5t,c=7t,(t>0),由余弦定理可求cosC=-$\frac{1}{2}$,可得∠C=120°,即可得解.

解答 解:∵a:b:c=3:5:7,
∴设a=3t,b=5t,c=7t,(t>0),
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=-$\frac{1}{2}$,
∴∠C=120°,
∴三角形为钝角三角形.
故选:A.

点评 本题考查三角形形状的判定,涉及余弦定理在解三角形中的应用,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}和{bn}(bn≠0,n∈N*),满足a1=b1=1,anbn+1-an+1bn+bn+1bn=0
(1)令cn=$\frac{{a}_{n}}{{b}_{n}}$,证明数列{cn}是等差数列,并求{cn}的通项公式
(2)若bn=2n-1,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{2sinπx,x<1}\\{f(x-\frac{2}{3}),x≥1}\end{array}\right.$,则$\frac{f(2)}{f(-\frac{1}{6})}$=-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个口袋中装有6个小球,其中红球4个,白球2个,如果不放回地依次摸出2个小球,则在第一次摸出红球的条件下,第2次摸出红球的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知抛物线x2=2py上的点M(m,3)到它的焦点的距离为5,则该抛物线的准线方程为y=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设(2-x)6=a0+a1(1+x)+a2(1+x)2+…+a6(1+x)6,则a0+a1+a2+a3+a4+a5+a6等于(  )
A.4B.-71C.64D.199

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知φ∈($\frac{π}{2}$,π),且sinφ=$\frac{3}{5}$,若函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于$\frac{π}{2}$,则f($\frac{π}{4}$)的值为(  )
A.-$\frac{3}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,为迎接校庆,我校准备在直角三角形ABC内的空地上植造一块“绿地△ABD”,规划在△ABD的内接正方形BEFG内种花,其余地方种草,若AB=a,∠DAB=θ,种草的面积为S1,种花的面积为S2,比值$\frac{{S}_{1}}{{S}_{2}}$称为“规划和谐度”.
(1)试用a,θ表示S1,S2
(2)若a为定值,BC足够长,当θ为何值时,“规划和谐度”有最小值,最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.f(x)=ex-ax2-(a+1)x-1,a∈R,(e为自然对数的底数)
(1)a=0时,求f(x)的极值;
(2)若?x0∈[0,1],使得f′(x)≥b成立,求b的取值范围.

查看答案和解析>>

同步练习册答案