分析 设A表示“第一次摸出红球”,B表示“第二次摸出红球”,则P(A)=$\frac{4}{6}$=$\frac{2}{3}$,P(AB)=$\frac{4}{6}×\frac{3}{5}$=$\frac{2}{5}$,由此利用条件概率计算公式能求出在第一次摸出红球的条件下,第2次摸出红球的概率.
解答 解:一个口袋中装有6个小球,其中红球4个,白球2个,如果不放回地依次摸出2个小球,
设A表示“第一次摸出红球”,B表示“第二次摸出红球”,
则P(A)=$\frac{4}{6}$=$\frac{2}{3}$,P(AB)=$\frac{4}{6}×\frac{3}{5}$=$\frac{2}{5}$,
∴在第一次摸出红球的条件下,第2次摸出红球的概率:
P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{\frac{2}{5}}{\frac{2}{3}}$=$\frac{3}{5}$.
故答案为:$\frac{3}{5}$.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 27是3的倍数或27是9的倍数 | |
| B. | 平行四边形的对角线互相垂直且平分 | |
| C. | 平行四边形的对角线互相垂直或平分 | |
| D. | 1是方程x-1=0的根,且是方程x2-5x+4=0的根 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16=3+13 | B. | 25=9+16 | C. | 36=10+26 | D. | 49=21+28 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4.56% | B. | 13.59% | C. | 27.18% | D. | 31.74% |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 钝角三角形 | B. | 锐角三角形 | C. | 直角三角形 | D. | 等边三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 组数 | 分组 | 低碳族的人数 | 占本组的频率 |
| 第一组 | [25,30﹚ | 120 | 0.6 |
| 第二组 | [30,35﹚ | 195 | p |
| 第三组 | [35,40﹚ | 100 | 0.5 |
| 第四组 | [40,45﹚ | a | 0.4 |
| 第五组 | [45,50﹚ | 30 | 0.3 |
| 第六组 | [50,55] | 15 | 0.3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$ | B. | $\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$ | C. | $\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$ | D. | $\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com