精英家教网 > 高中数学 > 题目详情
20.在△ABC中,点D满足$\overrightarrow{BC}$=3$\overrightarrow{BD}$,则(  )
A.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

分析 根据三角形法则,写出$\overrightarrow{AD}$的表示式,根据点D的位置,得到$\overrightarrow{BD}$与$\overrightarrow{BC}$之间的关系,根据向量的减法运算,写出最后结果.

解答 解:∵点D满足$\overrightarrow{BC}$=3$\overrightarrow{BD}$,
∴$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$=$\overrightarrow{AB}$+$\frac{1}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$,
故选:D

点评 本题考查向量的加减运算,考查三角形法则,是一个基础题,是解决其他问题的基础,若单独出现在试卷上,则是一个送分题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.一个口袋中装有6个小球,其中红球4个,白球2个,如果不放回地依次摸出2个小球,则在第一次摸出红球的条件下,第2次摸出红球的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,为迎接校庆,我校准备在直角三角形ABC内的空地上植造一块“绿地△ABD”,规划在△ABD的内接正方形BEFG内种花,其余地方种草,若AB=a,∠DAB=θ,种草的面积为S1,种花的面积为S2,比值$\frac{{S}_{1}}{{S}_{2}}$称为“规划和谐度”.
(1)试用a,θ表示S1,S2
(2)若a为定值,BC足够长,当θ为何值时,“规划和谐度”有最小值,最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C1的极坐标方程为ρ2cos2θ=18,曲线C2的极坐标方程为θ=$\frac{π}{6}$,曲线C1,C2相交于A,B两点.
(1)求A,B两点的极坐标;
(2)曲线C1与直线$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数)分别相交于M,N两点,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在极坐标系中,点(2,$\frac{π}{3}$)到圆ρ=-2cosθ的圆心的距离为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=($\frac{1}{2}$)10-ax,其中a为常数,且f(3)=$\frac{1}{16}$.
(1)求a的值;
(2)若f(x)≥4,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.f(x)=ex-ax2-(a+1)x-1,a∈R,(e为自然对数的底数)
(1)a=0时,求f(x)的极值;
(2)若?x0∈[0,1],使得f′(x)≥b成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=2sin(2x+$\frac{π}{3}$+φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{2}$个单位后关于y轴对称,则以下判断不正确的是(  )
A.$f({x+\frac{π}{4}})$是奇函数B.$({\frac{π}{4},0})$为f(x)的一个对称中心
C.f(x)在$({-\frac{3π}{4},-\frac{π}{4}})$上单调递增D.f(x)在(0,$\frac{π}{2}$)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆周长为π,A,B两点的坐标分别为(x1,y1),(x2,y2),则|y1-y2|的值为$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案