精英家教网 > 高中数学 > 题目详情
命题p:a∈M={x|x2-x<0};命题q:a∈N={x|x<2};p是q的
 
条件.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:命题p:a∈M={x|x2-x<0},解出0<x<1;命题q:a∈N={x|x<2},然后判断充要条件.
解答: 解:命题p:a∈M={x|x2-x<0},可知x2-x<0时M={x|0<x<1};
命题q:a∈N={x|x<2},显然a∈M则a∈N,即p⇒q;
a∈N时则a不一定∈M,q不能推出p,p是q的充分不必要条件.
故答案为:充分不必要.
点评:判断充要条件的方法是:
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数f(x)中,满足“对任意x1,x2∈(0,+∞),都有
f(x1)-f(x2)
x1-x2
<0”的是(  )
A、f(x)=ex
B、f(x)=(x-1)2
C、f(x)=
1
2x
D、f(x)=︳x+1 ︳

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)[125 
2
3
+(
1
16
 
1
2
+343 
1
3
] 
1
2

(2)[
1
4
(0.027 
2
3
+50×0.0016 
3
4
)] -
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanθ+sinθ=a,tanθ-sinθ=b,求证:(a2-b22=16ab.

查看答案和解析>>

科目:高中数学 来源: 题型:

设映射f:x→x2是集合A到集合B的映射,如果B={1,4},那么A∩B可能是(  )
A、∅B、∅或{1}
C、{1}D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

一元二次方程ax2+4x+3=0(a≠0)有一个正根和一个负根的充分不必要条件是(  )
A、a<0B、a>0
C、a<-1D、a>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=2(an+1),则a7=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x+1)=x2-3x+2
(1)求f(2)和f(a)的值;
(2)求f(x)与f(x-1)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为等差数列{an}的前n项和,若a1+a7+a13的值是一确定的常数,则下列各式:①a21;②a7;③S13;④S14;⑤S8-S5.其结果为确定常数的是(  )
A、②③⑤B、①②⑤
C、②③④D、③④⑤

查看答案和解析>>

同步练习册答案