精英家教网 > 高中数学 > 题目详情
8.在斜三角形ABC中,“A>$\frac{π}{4}$”是“tanA>1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 要判断“A>$\frac{π}{4}$”是“tanA>1”的什么条件,只要判断,其中一个成立时,另一个是否也成立即可,我们可以利用举反例进行判断;

解答 解:当A=$\frac{2π}{3}$时,tanA=-$\sqrt{3}$,所以△ABC中,“A>$\frac{π}{4}$”推不出“tanA>1”;
在斜三角形ABC中,当tanA>1,可得A>$\frac{π}{4}$,满足tanA>1,推出A>$\frac{π}{4}$,
∴“A>$\frac{π}{4}$”是“tanA>1”的必要不充分条件,
故选:B.

点评 本题考查了充要条件的判断,做题时一定要细心,此题利用特殊值法进行判断会比较简单,是一道基础题;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左右两个焦点分别为F1,F2,R(1,$\frac{3}{2}$)为椭圆C1上一点,过F2且与x轴垂直的直线与椭圆C1相交所得弦长为3.抛物线C2的顶点是椭圆C1的中心,焦点与椭圆C1的右焦点重合.
(Ⅰ)求椭圆C1和抛物线C2的方程;
(Ⅱ)过抛物线C2上一点P(异于原点O)作抛物线切线l交椭圆C1于A,B两点,求△AOB面积的最大值;
(Ⅲ)过椭圆C1右焦点F2的直线l1与椭圆相交于C,D两点,过R且平行于CD的直线交椭圆于另一点Q,问是否存在直线l1,使得四边形RQDC的对角线互相平分?若存在,求出l1的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线x2-$\frac{{y}^{2}}{9}$=1的焦点到渐近线的距离为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知F1、F2为双曲线x2-$\frac{{y}^{2}}{4}$=1的左右焦点,点P为双曲线上一点且满足PF1⊥x轴,则|PF2|为(  )
A.6B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=1-2sin(x+$\frac{π}{8}$)[sin(x+$\frac{π}{8}$)-cos(x+$\frac{π}{8}$)],x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x+$\frac{π}{8}$)在区间[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的右焦点为F,过点F作一条渐近线的垂线,垂足为P.若点P的纵坐标为$\frac{2\sqrt{5}}{5}$,则该双曲线的离心率是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数D(x)=$\left\{\begin{array}{l}1\\ 0\end{array}\right.\begin{array}{l}{\;}&{x为有理数}\\{\;}&{x为无理数}\end{array}$,则(  )
A.D(D(x))=1,0是D(x)的一个周期B.D(D(x))=1,1是D(x)的一个周期
C.D(D(x))=0,1是D(x)的一个周期D.D(D(x))=0,D(x)的最小正周期不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆C1:x2+y2+6x=0关于直线l1:y=2x+1对称的圆为C,则圆C的方程为(  )
A.(x+1)2+(y+2)2=9B.(x+1)2+(y-2)2=9C.(x-1)2+(y-2)2=9D.(x-1)2+(y+2)2=9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b,m为非零实数,且a2+b2+2-m=0,$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$+1-2m=0
(1)求证:$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$≥$\frac{9}{{a}^{2}+{b}^{2}}$;
(2)求证:m≥$\frac{7}{2}$.

查看答案和解析>>

同步练习册答案