精英家教网 > 高中数学 > 题目详情
17.已知三棱锥A-BCD内接与球O,且$BC=BD=CD=2\sqrt{3}$,若三棱锥A-BCD体积的最大值为$4\sqrt{3}$,则球O的表面积为(  )
A.16πB.25πC.36πD.64π

分析 确定S△BCD=3$\sqrt{3}$,利用三棱锥A-BCD体积的最大值为$4\sqrt{3}$,可得A到平面BCD的最大距离为4,再利用射影定理,即可求出球的半径,即可求出球O的表面积.

解答 解:∵$BC=BD=CD=2\sqrt{3}$,
∴S△BCD=3$\sqrt{3}$,
∵三棱锥A-BCD体积的最大值为$4\sqrt{3}$,
∴A到平面BCD的最大距离为4,
设球的半径为R,则($\frac{\sqrt{3}}{3}×2\sqrt{3}$)2=4×(2R-4),
∴2R=5,
∴球O的表面积为4πR2=25π.
故选B.

点评 本题考查球的半径,考查表面积的计算,确定A到平面BCD的最大距离为4是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某厂预计从2016年初开始的前x个月内,市场对某种产品的需求总量f(x)(单位:台)与月份x的近似关系为:f(x)=x(x+1)(35-2x),x∈N*且x≤12;
(1)写出2016年第x个月的需求量g(x)与月份x的关系式;
(2)如果该厂此种产品每月生产a台,为保证每月满足市场需求,则a至少为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,在正方体ABCD-A1B1C1D1中,E为棱D1C1的中点,试求$\overrightarrow{{A}_{1}{C}_{1}}$与$\overrightarrow{DE}$所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点A(-5,0),B(5,0),直线AM,BM的交点为M,AM,BM的斜率之积为$-\frac{16}{25}$,则点M的轨迹方程是(  )
A.$\frac{x^2}{25}-\frac{y^2}{16}=1$B.$\frac{x^2}{25}+\frac{y^2}{16}=1$
C.$\frac{x^2}{25}-\frac{y^2}{16}=1({x≠±5})$D.$\frac{x^2}{25}+\frac{y^2}{16}=1({x≠±5})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,三棱锥P-ABC中,PA⊥平面ABC,∠ABC=90°,PA=AC=2,D是PA的中点,E是CD的中点,点F在PB上,$\overrightarrow{PF}=3\overrightarrow{FB}$.
(1)证明:EF∥平面ABC;
(2)若∠BAC=60°,求点P到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图O是等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.
(I)证明EF∥BC.
(II)若AG等于⊙O的半径,且$AE=MN=2\sqrt{3}$,求四边形EDCF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知偶函数y=f(x)对于任意的$x∈[0,\frac{π}{2})$满足f'(x)cosx+f(x)sinx>0(其中f'(x)是函数f(x)的导函数),则下列不等式中成立的是(  )
A.$\sqrt{2}f(-\frac{π}{3})<f(\frac{π}{4})$B.$\sqrt{2}f(-\frac{π}{3})<f(-\frac{π}{4})$C.$f(0)>\sqrt{2}f(-\frac{π}{4})$D.$f(\frac{π}{6})<\sqrt{3}f(\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为了得到函数$y=sin(2x+\frac{π}{3})$的图象,可以将函数$y=sin(2x+\frac{π}{6})$的图象(  )
A.向左平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{π}{12}$个单位长度D.向右平移$\frac{π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知Rt△ABC,点D为斜边BC的中点,$|{\overrightarrow{AB}}|=6\sqrt{3}$,$|{\overrightarrow{AC}}|=6$,$\overrightarrow{AE}=\frac{1}{2}\overrightarrow{ED}$,则$\overrightarrow{AE}•\overrightarrow{EB}$等于(  )
A.-14B.-9C.9D.14

查看答案和解析>>

同步练习册答案