分析 (1)先证明四边形AEFB为正方形,可证得BE⊥AF;再利用面面垂直的性质,证得线面垂直,再得PE⊥AF,由此可证AF⊥平面PBE,从而证明面面垂直;
(2)求出$\overrightarrow{PF}$,平面PBC的一个法向量,利用向量的夹角公式,可求直线PF与平面PBC所成角的正弦值.
解答 (1)证明:∵EF∥AB,AB=EF=$\frac{1}{3}$CD,
∴四边形AEFB为平行四边形,又AE=AB,AE⊥CD,
∴四边形AEFB为正方形,∴BE⊥AF,
∴平面PAE⊥平面ABCE,PE⊥AE,平面PAE∩平面ABCE=AE,
∴PE⊥平面ABCE,∴PE⊥AF,
又PE∩BE=E,∴AF⊥平面PBE,
∵AF?平面PAF,
∴平面PBE⊥平面PAF;
(2)解:建立如图所示的坐标系,![]()
设AB=4,则P(0,0,4),A(0,4,0),B(4,4,0),C(8,0,0),F(4,0,0),
∴$\overrightarrow{PF}$=(4,0,-4),$\overrightarrow{BC}$=(4,-4,0),$\overrightarrow{PB}$=(4,4,-4),
设$\overrightarrow{a}$=(x,y,z)为平面PBC的一个法向量,则$\left\{\begin{array}{l}4x-4y=0\\ 4x+4y-4z=0\end{array}\right.$,
∴令x=1,则$\overrightarrow{a}$=(1,1,2),
∴sinα=$\frac{|\overrightarrow{PF}•\overrightarrow{a}|}{\left|\overrightarrow{PF}\right|•\left|\overrightarrow{a}\right|}$|=$\frac{\sqrt{3}}{6}$,
∴直线PF与平面PBC所成角的正弦值为 $\frac{\sqrt{3}}{6}$.
点评 本题考查了面面垂直的证明,考查线面角,考查向量知识的运用,正确求出平面的法向量是关键
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{42}}{6}$ | B. | $\frac{\sqrt{30}}{5}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com