精英家教网 > 高中数学 > 题目详情
8.已知椭圆E的中心在原点,焦点在坐标轴上,且经过两点M(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)和N(1,$\frac{\sqrt{2}}{2}$).
(1)求椭圆E的方程;
(2)设点F($\frac{\sqrt{2}}{3}$,0),过点F作直线l交椭圆E于AB两点,以AB为直径的圆交y轴于P、Q两点,劣弧长PQ记为d,求$\frac{d}{|AB|}$的最大值.

分析 (1)不妨设椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),半焦距为c.由已知条件,$\left\{\begin{array}{l}{\frac{1}{2{a}^{2}}+\frac{3}{4{b}^{2}}=1}\\{\frac{1}{{a}^{2}}+\frac{1}{2{b}^{2}}=1}\end{array}\right.$,解出即可得出.
(2)由点F($\frac{\sqrt{2}}{3}$,0),设A(x1,y1),B(x2,y2).设直线l方程为:my=x-$\frac{\sqrt{2}}{3}$,联立直线与椭圆方程,消去x整理可知:(m2+2)y2+$\frac{2\sqrt{2}m}{3}y$-$\frac{16}{9}$=0,AB|=$\sqrt{(1+{m}^{2})[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}$,可得线段AB的中点T,⊙T的半径为r=$\frac{1}{2}$|AB|.经过点T作TE⊥y轴,垂足为E,设∠QTE=θ∈$(0,\frac{π}{2})$.$\frac{d}{|AB|}$=θ,计算cosθ=$\frac{{x}_{T}}{\frac{1}{2}|AB|}$,利用函数的单调性进而得出.当AB与x轴重合时,AB与椭圆的长轴重合.

解答 解:(1)不妨设椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),半焦距为c.
由已知条件,$\left\{\begin{array}{l}{\frac{1}{2{a}^{2}}+\frac{3}{4{b}^{2}}=1}\\{\frac{1}{{a}^{2}}+\frac{1}{2{b}^{2}}=1}\end{array}\right.$,
解得a2=2,b=1.
∴椭圆E的方程为:$\frac{{x}^{2}}{2}$+y2=1.
(2)由点F($\frac{\sqrt{2}}{3}$,0),设A(x1,y1),B(x2,y2).
设直线l方程为:my=x-$\frac{\sqrt{2}}{3}$,
联立直线与椭圆方程,消去x整理可知:(m2+2)y2+$\frac{2\sqrt{2}m}{3}y$-$\frac{16}{9}$=0,
∴y1+y2=$\frac{-2\sqrt{2}m}{3({m}^{2}+2)}$,y1y2=$\frac{-16}{9({m}^{2}+2)}$.
|AB|=$\sqrt{(1+{m}^{2})[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}$=$\frac{2\sqrt{(1+{m}^{2})(18{m}^{2}+32)}}{3({m}^{2}+2)}$,
则线段AB的中点T$(\frac{2\sqrt{2}}{3{m}^{2}+6},\frac{-\sqrt{2}m}{3{m}^{2}+6})$,⊙T的半径为r=$\frac{1}{2}$|AB|.
经过点T作TE⊥y轴,垂足为E,设∠QTE=θ∈$(0,\frac{π}{2}]$.
则$\frac{d}{|AB|}$=$\frac{r•2θ}{2r}$=θ,
cosθ=$\frac{{x}_{T}}{\frac{1}{2}|AB|}$=$\frac{2{x}_{T}}{|AB|}$=$\frac{2\sqrt{2}}{\sqrt{(1+{m}^{2})(18{m}^{2}+32)}}$,
令m2=t≥0,g(t)=(1+t)(18t+32)=18t2+50t+32≥32,
∴cosθ≤$\frac{2\sqrt{2}}{\sqrt{32}}$=$\frac{1}{2}$,∴θ∈$[\frac{π}{3},\frac{π}{2})$.
当AB与x轴重合时,AB与椭圆的长轴重合,此时劣弧长PQ=πr,则$\frac{d}{|AB|}$=$\frac{π}{2}$.
综上可得:$\frac{d}{|AB|}$的最大值为$\frac{π}{2}$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、函数的单调性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知抛物线E:y2=2px(p>0)的准线方程为x=-$\frac{1}{16}$.
(1)求抛物线的方程;
(2)定长为2的线段MN的两端点在抛物线E上移动,O为坐标原点,点P满足$\frac{\overrightarrow{OM}+\overrightarrow{ON}}{2}$=$\overrightarrow{OP}$,求点P到y轴距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.tan17°+tan28°+tan17°tan28°等于(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=($\frac{1}{3}$)x-log3x,实数a、b、c满足f(a)•f(b)•f(c)<0,且0<a<b<c,若实数x0是函数f(x)的一个零点,那么下列不等式中,不可能成立的是(  )
A.x0<aB.x0>bC.x0<cD.x0>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数fn(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(n+1)x2+x(n∈N*)数列{an}满足an+1=fn′(an),a1=3.
(1)求a2,a3,a4
(2)根据(1)猜想数列{an}的通项公式,并用数学归纳法证明;
(3)求证:对一切正整数n,$\frac{1}{{{{({a_1}-2)}^2}}}+\frac{1}{{{{({a_2}-2)}^2}}}+\frac{1}{{{{({a_3}-2)}^2}}}+…+\frac{1}{{{{({a_n}-2)}^2}}}<\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx.
(1)求函数g(x)=f(x)+mx2-4x在定义域内单调递增,求实数m的取值范围;
(2)若b>a>0,求证:f(b)-f(a)>$\frac{2ab-2{a}^{2}}{{a}^{2}+{b}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)的导函数f′(x)的图象如图,下列说法正确的是④ (只填序号)
①函数f(x)在x=1处取得极小值-1
②函数f(x)在x=0和x=1处取得极值
③函数f(x)在(-∞,1)上是单调递减函数,在(1,+∞)上是单调递增函数
④函数f(x)在(-∞,0)和(2,+∞)上是单调递增函数,在(0,2)上是单调递减函数
⑤函数f(x)在x=0处取得极小值,在x=2处取得极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图①,四边形ABCD为等腰梯形,AE⊥CD,AB=AE=$\frac{1}{3}$CD,F为EC的中点,现将△DAE沿AE翻折到△PAE的位置,如图②,且平面PAE⊥面ABCE.

(1)求证:面PAF⊥面PBE
(2)求直线PF与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为A1D1和CC1的中点.
(1)求证:EF∥平面ACD1
(2)求EF与平面CC1D1D所成角的余弦值.

查看答案和解析>>

同步练习册答案