精英家教网 > 高中数学 > 题目详情
16.已知f(x)=($\frac{1}{3}$)x-log3x,实数a、b、c满足f(a)•f(b)•f(c)<0,且0<a<b<c,若实数x0是函数f(x)的一个零点,那么下列不等式中,不可能成立的是(  )
A.x0<aB.x0>bC.x0<cD.x0>c

分析 f(x)=($\frac{1}{3}$)x-log3x在(0,+∞)上是减函数,即f(a)、f(b)、f(c)中一项为负,两项为正数;或者三项均为负数;

解答 解:∵f(x)=($\frac{1}{3}$)x-log3x在(0,+∞)上是减函数,0<a<b<c,且f(a)f(b)f(c)<0,
∴f(a)、f(b)、f(c)中一项为负,两项为正数;或者三项均为负数;
即:f(c)<0,0<f(b)<f(a);或f(a)<f(b)<f(c)<0;
由于实数x0 是函数y=f(x)的一个零点,
当f(c)<0,0<f(b)<f(a)时,b<x0<c,此时B、C成立;
当f(a)<f(b)<f(c)<0时,x0<a,此时A成立;
综上可得,D不可能成立;
故选:D.

点评 本题主要考查函数基本特征与单调性应用,以及分类讨论应用,属中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.如图所示的数阵中,第20行第2个数字是$\frac{1}{191}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P、Q分别是线段CC1,BD上的点,R是直线AD上的点,满足PQ∥平面ABC1D1,PQ⊥RQ,则|PR|的最小值是(  )
A.$\frac{\sqrt{42}}{6}$B.$\frac{\sqrt{30}}{5}$C.$\frac{\sqrt{5}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln$\sqrt{1+2x}$+mx.
(Ⅰ)若f(x)为定义域上的单调函数,求实数m的取值范围;
(Ⅱ)当m=0,且0≤b<a≤1时,证明:$\frac{4}{3}$<$\frac{f(a)-f(b)}{a-b}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}是首项为a,公差为b的等差数列,数列{bn}是首项为b,公比为a的等比数列,且a1<b1<a2<b2<a3,其中a,b,m,n∈N*
(Ⅰ)求a的值;
(Ⅱ)若数列{1+am}与数列{bn}有公共项,将所有公共项按原来顺序排列后构成一个新数列{cn},求数列{cn}的通项公式;
(Ⅲ)设dm=$\frac{a_m}{2m}$,m∈N*,求证:$\frac{1}{{1+{d_1}}}$+$\frac{2}{{(1+{d_1})(1+{d_2})}}$+…+$\frac{n}{{(1+{d_1})(1+{d_2})…(1+{d_n})}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex-kx,x∈R,k∈R.
(1)若k=e,试确定函数f(x)的单调区间;
(2)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围;
(3)设函数g(x)=f(x)+f(-x),求证:g(1)g(2)…g(2n)>(e2n+1+2)n(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E的中心在原点,焦点在坐标轴上,且经过两点M(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)和N(1,$\frac{\sqrt{2}}{2}$).
(1)求椭圆E的方程;
(2)设点F($\frac{\sqrt{2}}{3}$,0),过点F作直线l交椭圆E于AB两点,以AB为直径的圆交y轴于P、Q两点,劣弧长PQ记为d,求$\frac{d}{|AB|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=2sin(\frac{x}{2}+\frac{π}{3}),x∈R$.
(1)求它的周期;
(2)求f(x)最大值和此时相应的x的值;
(3)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C:y2=2px(p>0)的焦点为F(1,0)
(Ⅰ)求抛物线的方程;
(Ⅱ)已知过点(-1,0)的直线l与抛物线C交于A,B两点,且|FA|=2|FB|,求直线l的方程.

查看答案和解析>>

同步练习册答案