精英家教网 > 高中数学 > 题目详情
已知x为实数,则“x≥3”是“x2-2x-3≥0”的
 
条件(填充分不必要、必要不充分、充要条件、既不充分也不必要).
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:求出不等式的等价条件,利用充分条件和必要条件的定义即可得到结论.
解答: 解:由x2-2x-3≥0解得x≥3或x≤-1,
∴“x≥3”是“x2-2x-3≥0”的充分不必要条件,
故答案为:充分不必要
点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}前n项和Sn,且Sn=2an-2,令bn=log2an
(Ⅰ)试求数列{an}的通项公式;
(Ⅱ)设cn=
bn
an
,求证数列{cn}的前n项和Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1
x=-4+cost
y=3+sint
(t为参数),C2
x=8cosθ
y=3sinθ
(θ为参数).
(Ⅰ)化C1,C2的方程为普通方程;
(Ⅱ)若C1上的点P对应的参数为t=
π
2
,Q为C2上的动点,求PQ中点M到直线C3
x=3+2t
y=-2+t
(t为参数)距离的最小值及此时Q点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=12,直线l:4x+3y=25,则圆C的圆心到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}前n项和Sn=2n2+3n+1,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数,例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②指数函数f(x)=2x(x∈R)是单函数;
③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④在定义域上具有单调性的函数一定是单函数;
⑤若f(x)为单函数,则函数f(x)在定义域上具有单调性.
其中的真命题是
 
.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)由“若a,b,c∈R,则(ab)c=a(bc)”类比“若
a
b
c
为三个向量则(
a
b
)•
c
=
a
•(
b
c
)”;
(2)在数列{an}中,a1=0,an+1=2an+2猜想an=2n-2;
(3)在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积;
(4)
-2
-3
1
x
dx=ln
2
3

上述四个推理中,得出的结论正确的是
 
.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设P(x,y)是曲线C:x2+y2+4x+3=0上任意一点,则
y
x
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果
a
b
=
a
c
a
0
,那么(  )
A、
b
=
c
B、
b
c
C、
b
c
D、
b
c
a
方向上的投影相等

查看答案和解析>>

同步练习册答案