精英家教网 > 高中数学 > 题目详情

是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a的取值范围;若不存在,说明理由.

 

a的取值范围为a>1或a<-

【解析】【解析】
令f(x)=0,则Δ=(3a-2)2-4(a-1)=9a2-16a+8=9(a-)2+>0,即f(x)=0有两个不相等的实数根,

∴若实数a满足条件,则只需f(-1)·f(3)≤0即可.

f(-1)·f(3)=(1-3a+2+a-1)·(9+9a-6+a-1)=4(1-a)(5a+1)≤0,

∴a≤-或a≥1.

检验:(1)当f(-1)=0时,a=1,所以f(x)=x2+x.

令f(x)=0,即x2+x=0,得x=0或x=-1.

方程在[-1,3]上有两个实数根,不合题意,故a≠1.

当f(3)=0时,a=-

此时f(x)=x2-x-

令f(x)=0,即x2-x-=0,

解得x=-或x=3.

方程在[-1,3]上有两个实数根,不合题意,故a≠-

所以a的取值范围为a>1或a<-

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-6简单的三角恒等变换(解析版) 题型:选择题

已知cos(α-)+sinα=,则sin(α+)的值是(  )

A.- B. C.- D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-3三角函数的图象与性质(解析版) 题型:解答题

已知函数f(x)=Asin(ωx+φ)+1(ω>0,A>0,0<φ<)的周期为π,f()=+1,且f(x)的最大值为3.

(1)写出f(x)的表达式;

(2)写出函数f(x)的对称中心,对称轴方程.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-9函数模型及其应用(解析版) 题型:填空题

某厂去年的产值为1,若计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年这五年内,这个厂的总产值约为________.(保留一位小数,取1.15≈1.6)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-8函数与方程(解析版) 题型:解答题

已知函数f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).

(1)若g(x)=m有实数根,求m的取值范围;

(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-8函数与方程(解析版) 题型:选择题

函数f(x)=lnx-x-a有两个不同的零点,则实数a的取值范围是(  )

A.(-∞,-1] B.(-∞,-1)

C.[-1,+∞) D.(-1,+∞)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-7函数的图象(解析版) 题型:填空题

给出定义:若m-<x≤m+(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m,在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:①函数y=f(x)的定义域为R,值域为[0,];②函数y=f(x)在[-]上是增函数;③函数y=f(x)是周期函数,最小正周期为1;④函数y=f(x)的图象关于直线x= (k∈Z)对称.其中正确命题的序号是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-6对数与对数函数(解析版) 题型:选择题

设a=lg e,b=(lg e)2,c=lg,则(  )

A.a>b>c B.a>c>b

C.c>a>b D.c>b>a

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:解答题

已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.

(1)判断f(x)的奇偶性;

(2)求证:f(x)是R上的减函数;

(3)求f(x)在区间[-3,3]上的值域;

(4)若?x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.

 

查看答案和解析>>

同步练习册答案