精英家教网 > 高中数学 > 题目详情

函数f(x)=lnx-x-a有两个不同的零点,则实数a的取值范围是(  )

A.(-∞,-1] B.(-∞,-1)

C.[-1,+∞) D.(-1,+∞)

 

B

【解析】函数f(x)=lnx-x-a的零点,即为关于x的方程lnx-x-a=0的实根,将方程lnx-x-a=0,化为方程lnx=x+a,令y1=lnx,y2=x+a,由导数知识可知,直线y2=x+a与曲线y1=lnx相切时有a=-1,若关于x的方程lnx-x-a=0有两个不同的实根,则实数a的取值范围是(-∞,-1).故选B.

 

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-5两角和与差的正弦、余弦和正切(解析版) 题型:解答题

已知函数f(x)=6cos2sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.

(1)求ω的值及函数f(x)的值域;

(2)若f(x0)=,且x0∈(-),求f(x0+1)的值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-3三角函数的图象与性质(解析版) 题型:选择题

函数f(x)=cos(ωx+φ)对任意的x∈R,都有f(-x)=f(+x),若函数g(x)=3sin(ωx+φ)-2,则g()的值是(  )

A.1 B.-5或3 C.-2 D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-9函数模型及其应用(解析版) 题型:选择题

台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为(  )

A.0.5小时 B.1小时 C.1.5小时 D.2小时

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-8函数与方程(解析版) 题型:解答题

是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a的取值范围;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-8函数与方程(解析版) 题型:选择题

方程lnx=6-2x的根必定属于区间(  )

A.(-2,1) B.(,4) C.(1,) D.()

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-7函数的图象(解析版) 题型:解答题

若直线y=2a与函数y=|ax-1|(a>0且a≠1)的图象有两个公共点,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-6对数与对数函数(解析版) 题型:填空题

如果函数y=f(x)图象上任意一点的坐标(x,y)都满足方程lg(x+y)=lgx+lgy,那么y=f(x)在[2,4]上的最小值是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:解答题

已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,如果f(ax+1)≤f(x-2)在x∈[,1]上恒成立,求实数a的取值范围.

 

查看答案和解析>>

同步练习册答案