精英家教网 > 高中数学 > 题目详情
19.已知直线y=a与曲线y=2(x-1)和y=x+ex的交点分别为A,B,则线段|AB|的最小值为$\frac{3}{2}$.

分析 设A(x1,a),B(x2,a),则2(x1-1)=x2+ex2,表示出x1,求出|AB|,利用导数求出|AB|的最小值.

解答 解:设A(x1,a),B(x2,a),
则2(x1-1)=x2+ex2
∴x1=$\frac{1}{2}$(x2+ex2)+1,
∴|AB|=|x2-x1|=|$\frac{1}{2}$(x2-ex2)-1|,
令y=$\frac{1}{2}$(x-ex)-1,
则y′=$\frac{1}{2}$(1-ex),
∴函数在(0,+∞)上单调递减,在(-∞,0)上单调递增,
∴x=0时,函数y的最大值为-$\frac{3}{2}$,
所以|AB|的最小值为$\frac{3}{2}$;
故答案为:$\frac{3}{2}$.

点评 本题考查导数知识的运用,考查学生分析解决问题的能力,正确求导确定函数的单调性是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图是导函数y=f′(x)的图象,则函数f(x)在开区间(a,b)内有极小值点(  )个;哪个区间是减函数(  )
A.1;(x1,x3B.1;(x2,x4C.2;(x4,x6D.2;(x5,x6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.北京某中学从40名学生中选1人作为北京男篮拉拉队成员,采用下面两种选法:
选法一:将这40名学生从1~40名进行编号,相应的制作的1~40这40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽1个号签,与这个号签编号一致的学生幸运入选;
选法二:将39个白球与一个红球混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一个球,摸到红球的学生称为拉拉队成员;
试问这两种选法是否都是抽签法?为什么?这两种选法有何异同?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设$\overrightarrow{a}$=(1+cosα,sinα),$\overrightarrow{b}$=(1-cosβ,sinβ),$\overrightarrow{c}$=(1,0),α∈(0,π),β∈(π,2π),设$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为θ1,$\overrightarrow{b}$与$\overrightarrow{c}$的夹角为θ2,且θ12=$\frac{π}{6}$,求sin$\frac{α-β}{8}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在抛物线y=x2上取不同的两点An(an,an2),An+1(an+1,an+12),若AnAn+1的斜率为2-n(n∈N*).
(1)求数列{an}(n∈N*)的前2n项和;
(2)是否存在a1,使得数列{an}(n∈N*)是等差或等比数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求证:2(1-sinα)(1+cosα)=(1-sinα+cosα)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$.
(1)求f(x)在区间[-$\frac{π}{12}$,$\frac{2π}{3}$]上的最大值和最小值及其相应的自变量x的值;
(2)在直角坐标系中作出函数f(x)在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知y=f(x)的定义域为[0,2],求:①f(x2);②f(|2x-1|);③f($\sqrt{x-2}$)的定义域.
(2)已知函数f(x2-1)的定义域为[0,1],求f(x)的定义域;
(3)已知函数f(2x+1)的定义域为(0,1),求f(2x-1)的定义域;
(4)已知函数f(x+1)的定义域为[-2,3],求f($\frac{1}{x}$+2)的定义域;
(5)已知函数f(x)的定义域为[0,1],求g(x)=f(x+m)+f(x-m)(m>0)的定义域;
(6)已知函数f(x)的定义域为[-$\frac{1}{2}$,$\frac{3}{2}$],求F(x)=f(ax)+f($\frac{x}{a}$)(a>0)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知非零向量$\overrightarrow a,\vec b$,满足$|{\overrightarrow a}|=1$且$({\overrightarrow a-\overrightarrow b})•({\overrightarrow a+\overrightarrow b})=\frac{1}{2}$.
(1)若$\overrightarrow a•\overrightarrow b=\frac{1}{2}$,求向量$\overrightarrow a,\vec b$的夹角;
(2)在(1)的条件下,求$|{\overrightarrow a-\overrightarrow b}|$的值.

查看答案和解析>>

同步练习册答案