精英家教网 > 高中数学 > 题目详情
14.如图所示,在△ABC所在平面外有一点P,M、N分别是PC和AC上的点,过MN作平面平行于BC,画出这个平面与其他各面的交线,并说明画法.

分析 过点N在面ABC内作NE∥BC交AB于E,过点M在面PBC内作MF∥BC交PB于F,连结E、F,则平面MNEF为所求.

解答 解:画法:过点N在面ABC内作NE∥BC交AB于E,
过点M在面PBC内作MF∥BC交PB于F,
连结E、F,则平面MNEF为所求,
其中MN、NE、EF、MF分别为平面MNEF与各面的交线.
∵BC∥NE,BC?面MNEF,NE?平面MNEF,
∴BC∥平面MNEF.

点评 本题考查满足条件的平面的作法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图所示,函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}}$)离y轴最近的零点与最大值均在抛物线y=-$\frac{3}{2}$x2+$\frac{1}{2}$x+1上,则f(x)=(  )
A.$f(x)=sin(\frac{1}{6}x+\frac{π}{3})$B.$f(x)=sin(\frac{1}{2}x+\frac{π}{3})$C.$f(x)=sin(\frac{π}{2}x+\frac{π}{3})$D.$f(x)=sin(\frac{π}{2}x+\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左焦点、左顶点分别为F,C,过原点O的直线与两分支分别交于A,B(异于C点),若直线AF交BC于D点,且$\overrightarrow{AD}$=2$\overrightarrow{DF}$,则双曲线的离心率为(  )
A.2B.3C.4D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在数列{an}中,an=1+a+a2+…+an-1,求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{\sqrt{5}}{2}$,过右焦点的直线与两条渐近线分别交于A,B,且与其中一条渐近线垂直,若△OAB的面积为$\frac{16}{3}$,其中O为坐标原点,则双曲线的焦距为(  )
A.2$\sqrt{3}$B.2$\sqrt{5}$C.2$\sqrt{10}$D.2$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小值为-2,且对于任意x∈R,恒有f(x+$\frac{π}{2}$)+f(x)=0,又f(0)=1,则函数f(x)在区间[0,π]上的增区间为(  )
A.[0,$\frac{π}{6}$]B.[$\frac{π}{6}$,$\frac{2π}{3}$]C.[0,$\frac{π}{6}$]∪[$\frac{2π}{3}$,π]D.[0,$\frac{π}{6}$]和[$\frac{2π}{3}$,π]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn=2n2+5n+1(n∈N*),数列{bn}的前n项和Bn满足Bn=$\frac{3}{2}$bn-$\frac{3}{2}$(n∈N*).
(1)求数列{an}的通项公式;
(2)将数列{an}与{bn}的公共项,按它们在原数列中的先后顺序排成一个新的数列{cn},求数列{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知F为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,且双曲线C的焦距为2c,定点G(0,c),若双曲线C上存在点P满足|PF|=|PG|,则双曲线的离心率的取值范围是(  )
A.($\sqrt{2}$,+∞)B.(1,$\sqrt{2}$)C.[$\sqrt{3}$,+∞)D.(1,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{1}{{x}^{3}}$+lg|x|图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案