分析 (1)设数列{an}的公差为d,由a1•a2=3,a2•a3=15.解得a1=1,d=2,即可得an=2n-1.
(2)由(1)知bn=(an+1)•2${\;}^{{a}_{n}}$=2n•22n-4=n•4n,利用错位相减法求和即可
解答 解:(1)设数列{an}的公差为d,
因为a1•a2=3,a2•a3=15.
解得a1=1,d=2,所以an=2n-1.
(2)由(1)知bn=(an+1)•2${\;}^{{a}_{n}}$=2n•22n-4=n•4n,
Tn=1•41+2•42+3•43+…+n•4n.
4Tn=1•42+2•43+…+(n-1)•4n+n•4n+1,
两式相减,得-3Tn=41+42+43+…+4n-n•4n+1
=$\frac{4(1-{4}^{n})}{1-4}$-n•4n+1=$\frac{1-3n}{3}×{4}^{n-1}-\frac{4}{3}$,
所以Tn=$\frac{4+(3n-1)•{4}^{n+1}}{9}$.
点评 本题考查了等差数列的通项,考查了错位相减法求和,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 24 | C. | 71 | D. | 134 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 排队人数 | 1 | 3 | 5 | 8 | 10 | ≥11 |
| 概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 曲线b仍然是正态曲线 | |
| B. | 曲线a和曲线b的最高点的纵坐标相等 | |
| C. | 以曲线b为正态分布的总体的方差比以曲线a为正态分布的总体的方差大2 | |
| D. | 以曲线b为正态分布的总体的期望比以曲线a为正态分布的总体的期望大2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数g(x)图象的对称轴方程为$x=kπ-\frac{π}{12}(k∈Z)$ | |
| B. | 函数g(x)的最大值为$2\sqrt{2}$ | |
| C. | 函数g(x)的图象上存在点P,使得在P点处的切线与直线l:y=3x-1平行 | |
| D. | 方程g(x)=2的两个不同的解分别为x1,x2,则|x1-x2|的最小值为$\frac{π}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com