精英家教网 > 高中数学 > 题目详情
12.已知直线x-y+b=0与圆x2+y2=25相切,则b的值是±5$\sqrt{2}$.

分析 由题意知圆心(0,0)到直线x-y+b=0的距离等于半径,代入点到直线的距离公式求出b的值.

解答 解:由题意知,直线x-y+b=0与圆x2+y2=25相切,
∴$\frac{|b|}{\sqrt{2}}$=5,解得b=±5$\sqrt{2}$.
故答案为:±5$\sqrt{2}$.

点评 本题考查了直线与圆相切的条件和点到直线的距离公式,是常见的基本题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设函数g(x)=ax2-2lnx.
(1)讨论g(x)的单调性.
(2)设h(x)=$\frac{1-3a}{2}{x}^{2}+(2+a)lnx-x$(a≠1),f(x)=g(x)+h(x),若存在x0≥1使得f(x0)$<\frac{a}{a-1}$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解方程:
(1)C${\;}_{13}^{x+1}$=C${\;}_{13}^{2x-3}$;
(2)C${\;}_{x+2}^{x-2}$+C${\;}_{x+2}^{x-3}$=$\frac{1}{10}$A${\;}_{x+3}^{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设方程4x=|lg(-x)|的两个根为x1,x2,则(  )
A.x1x2<0B.x1x2=1C.x1x2>0D.0<x1x2<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx+x2+2ax,a∈R.
(1)若函数f(x)在其定义域上为增函数,求a的取值范围;
(2)当$a=\frac{1}{2}$时,函数$g(x)=\frac{f(x)}{x+1}-x$在区间[t,+∞)(t∈N*)上存在极值,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}为等差数列,Sn是它的前n项和,若a1=2,S4=20,则S6=(  )
A.32B.36C.40D.42

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}的公差是2,a4=8,则{an}的前n项和Sn=(  )
A.n(n+1)B.n(n-1)C.$\frac{n(n+1)}{2}$D.$\frac{n(n-1)}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体720人中采用分层抽样的办法抽取50人进行了问卷调查,得到了如下列联表:

喜欢户外运动情况
性别
喜欢户外运动不喜欢户外运动合计
男性20
女性15
合计50
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是$\frac{3}{5}$.
(1)请将上面的列联表补充完整;
(2)求该公司男、女员工各多少名;
(3)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由.
下面的临界值表仅供参考;
P(x2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式,x2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在数列{an}中,a1=1,an+1=an+c(c为常数,n∈N*),且a1,a2,a5成公比不等于1的等比数列.
(Ⅰ)求c的值;
(Ⅱ)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求证:若数列{bn}的前n项和为Sn,则$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案